MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngbascntr Structured version   Visualization version   GIF version

Theorem crngbascntr 20254
Description: The base set of a commutative ring is its center. (Contributed by SN, 21-Mar-2025.)
Hypotheses
Ref Expression
crngbascntr.b 𝐵 = (Base‘𝐺)
crngbascntr.z 𝑍 = (Cntr‘(mulGrp‘𝐺))
Assertion
Ref Expression
crngbascntr (𝐺 ∈ CRing → 𝐵 = 𝑍)

Proof of Theorem crngbascntr
StepHypRef Expression
1 eqid 2736 . . 3 (mulGrp‘𝐺) = (mulGrp‘𝐺)
21crngmgp 20239 . 2 (𝐺 ∈ CRing → (mulGrp‘𝐺) ∈ CMnd)
3 crngbascntr.b . . . 4 𝐵 = (Base‘𝐺)
41, 3mgpbas 20143 . . 3 𝐵 = (Base‘(mulGrp‘𝐺))
5 crngbascntr.z . . 3 𝑍 = (Cntr‘(mulGrp‘𝐺))
64, 5cmnbascntr 19824 . 2 ((mulGrp‘𝐺) ∈ CMnd → 𝐵 = 𝑍)
72, 6syl 17 1 (𝐺 ∈ CRing → 𝐵 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6560  Basecbs 17248  Cntrccntr 19335  CMndccmn 19799  mulGrpcmgp 20138  CRingccrg 20232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-cntz 19336  df-cntr 19337  df-cmn 19801  df-mgp 20139  df-cring 20234
This theorem is referenced by:  sraassa  21890
  Copyright terms: Public domain W3C validator