![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfdmsn | Structured version Visualization version GIF version |
Description: A complex function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
cncfdmsn | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ ({𝐴}–cn→{𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfdmsn 45410 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ (𝒫 {𝐴} Cn 𝒫 {𝐵})) | |
2 | snssi 4813 | . . . 4 ⊢ (𝐴 ∈ ℂ → {𝐴} ⊆ ℂ) | |
3 | snssi 4813 | . . . 4 ⊢ (𝐵 ∈ ℂ → {𝐵} ⊆ ℂ) | |
4 | eqid 2725 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
5 | eqid 2725 | . . . . 5 ⊢ ((TopOpen‘ℂfld) ↾t {𝐴}) = ((TopOpen‘ℂfld) ↾t {𝐴}) | |
6 | eqid 2725 | . . . . 5 ⊢ ((TopOpen‘ℂfld) ↾t {𝐵}) = ((TopOpen‘ℂfld) ↾t {𝐵}) | |
7 | 4, 5, 6 | cncfcn 24879 | . . . 4 ⊢ (({𝐴} ⊆ ℂ ∧ {𝐵} ⊆ ℂ) → ({𝐴}–cn→{𝐵}) = (((TopOpen‘ℂfld) ↾t {𝐴}) Cn ((TopOpen‘ℂfld) ↾t {𝐵}))) |
8 | 2, 3, 7 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ({𝐴}–cn→{𝐵}) = (((TopOpen‘ℂfld) ↾t {𝐴}) Cn ((TopOpen‘ℂfld) ↾t {𝐵}))) |
9 | 4 | cnfldtopon 24748 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
10 | simpl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
11 | restsn2 23124 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐴 ∈ ℂ) → ((TopOpen‘ℂfld) ↾t {𝐴}) = 𝒫 {𝐴}) | |
12 | 9, 10, 11 | sylancr 585 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((TopOpen‘ℂfld) ↾t {𝐴}) = 𝒫 {𝐴}) |
13 | simpr 483 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
14 | restsn2 23124 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐵 ∈ ℂ) → ((TopOpen‘ℂfld) ↾t {𝐵}) = 𝒫 {𝐵}) | |
15 | 9, 13, 14 | sylancr 585 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((TopOpen‘ℂfld) ↾t {𝐵}) = 𝒫 {𝐵}) |
16 | 12, 15 | oveq12d 7437 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((TopOpen‘ℂfld) ↾t {𝐴}) Cn ((TopOpen‘ℂfld) ↾t {𝐵})) = (𝒫 {𝐴} Cn 𝒫 {𝐵})) |
17 | 8, 16 | eqtr2d 2766 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝒫 {𝐴} Cn 𝒫 {𝐵}) = ({𝐴}–cn→{𝐵})) |
18 | 1, 17 | eleqtrd 2827 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ {𝐴} ↦ 𝐵) ∈ ({𝐴}–cn→{𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 𝒫 cpw 4604 {csn 4630 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 ℂcc 11143 ↾t crest 17410 TopOpenctopn 17411 ℂfldccnfld 21301 TopOnctopon 22861 Cn ccn 23177 –cn→ccncf 24845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9441 df-sup 9472 df-inf 9473 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-fz 13525 df-seq 14008 df-exp 14068 df-cj 15087 df-re 15088 df-im 15089 df-sqrt 15223 df-abs 15224 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17189 df-plusg 17254 df-mulr 17255 df-starv 17256 df-tset 17260 df-ple 17261 df-ds 17263 df-unif 17264 df-rest 17412 df-topn 17413 df-topgen 17433 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-cnfld 21302 df-top 22845 df-topon 22862 df-topsp 22884 df-bases 22898 df-cn 23180 df-cnp 23181 df-xms 24275 df-ms 24276 df-cncf 24847 |
This theorem is referenced by: cncfiooicc 45422 |
Copyright terms: Public domain | W3C validator |