MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkopjcn Structured version   Visualization version   GIF version

Theorem xkopjcn 22715
Description: Continuity of a projection map from the space of continuous functions. (This theorem can be strengthened, to joint continuity in both 𝑓 and 𝐴 as a function on (𝑆ko 𝑅) ×t 𝑅, but not without stronger assumptions on 𝑅; see xkofvcn 22743.) (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
xkopjcn.1 𝑋 = 𝑅
Assertion
Ref Expression
xkopjcn ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝐴)) ∈ ((𝑆ko 𝑅) Cn 𝑆))
Distinct variable groups:   𝐴,𝑓   𝑅,𝑓   𝑆,𝑓   𝑓,𝑋

Proof of Theorem xkopjcn
StepHypRef Expression
1 eqid 2738 . . . . . 6 (𝑆ko 𝑅) = (𝑆ko 𝑅)
21xkotopon 22659 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
323adant3 1130 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
4 xkopjcn.1 . . . . . . . . 9 𝑋 = 𝑅
54topopn 21963 . . . . . . . 8 (𝑅 ∈ Top → 𝑋𝑅)
653ad2ant1 1131 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → 𝑋𝑅)
7 fconst6g 6647 . . . . . . . 8 (𝑆 ∈ Top → (𝑋 × {𝑆}):𝑋⟶Top)
873ad2ant2 1132 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑋 × {𝑆}):𝑋⟶Top)
9 pttop 22641 . . . . . . 7 ((𝑋𝑅 ∧ (𝑋 × {𝑆}):𝑋⟶Top) → (∏t‘(𝑋 × {𝑆})) ∈ Top)
106, 8, 9syl2anc 583 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (∏t‘(𝑋 × {𝑆})) ∈ Top)
11 eqid 2738 . . . . . . . . . 10 𝑆 = 𝑆
124, 11cnf 22305 . . . . . . . . 9 (𝑓 ∈ (𝑅 Cn 𝑆) → 𝑓:𝑋 𝑆)
13 uniexg 7571 . . . . . . . . . . 11 (𝑆 ∈ Top → 𝑆 ∈ V)
14133ad2ant2 1132 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → 𝑆 ∈ V)
1514, 6elmapd 8587 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ ( 𝑆m 𝑋) ↔ 𝑓:𝑋 𝑆))
1612, 15syl5ibr 245 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) → 𝑓 ∈ ( 𝑆m 𝑋)))
1716ssrdv 3923 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑅 Cn 𝑆) ⊆ ( 𝑆m 𝑋))
18 simp2 1135 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → 𝑆 ∈ Top)
19 eqid 2738 . . . . . . . . 9 (∏t‘(𝑋 × {𝑆})) = (∏t‘(𝑋 × {𝑆}))
2019, 11ptuniconst 22657 . . . . . . . 8 ((𝑋𝑅𝑆 ∈ Top) → ( 𝑆m 𝑋) = (∏t‘(𝑋 × {𝑆})))
216, 18, 20syl2anc 583 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ( 𝑆m 𝑋) = (∏t‘(𝑋 × {𝑆})))
2217, 21sseqtrd 3957 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑅 Cn 𝑆) ⊆ (∏t‘(𝑋 × {𝑆})))
23 eqid 2738 . . . . . . 7 (∏t‘(𝑋 × {𝑆})) = (∏t‘(𝑋 × {𝑆}))
2423restuni 22221 . . . . . 6 (((∏t‘(𝑋 × {𝑆})) ∈ Top ∧ (𝑅 Cn 𝑆) ⊆ (∏t‘(𝑋 × {𝑆}))) → (𝑅 Cn 𝑆) = ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)))
2510, 22, 24syl2anc 583 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑅 Cn 𝑆) = ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)))
2625fveq2d 6760 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (TopOn‘(𝑅 Cn 𝑆)) = (TopOn‘ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))))
273, 26eleqtrd 2841 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑆ko 𝑅) ∈ (TopOn‘ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))))
284, 19xkoptsub 22713 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆ko 𝑅))
29283adant3 1130 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆ko 𝑅))
30 eqid 2738 . . . 4 ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) = ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))
3130cnss1 22335 . . 3 (((𝑆ko 𝑅) ∈ (TopOn‘ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))) ∧ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆ko 𝑅)) → (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆) ⊆ ((𝑆ko 𝑅) Cn 𝑆))
3227, 29, 31syl2anc 583 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆) ⊆ ((𝑆ko 𝑅) Cn 𝑆))
3322resmptd 5937 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ↾ (𝑅 Cn 𝑆)) = (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝐴)))
34 simp3 1136 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
3523, 19ptpjcn 22670 . . . . . 6 ((𝑋𝑅 ∧ (𝑋 × {𝑆}):𝑋⟶Top ∧ 𝐴𝑋) → (𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn ((𝑋 × {𝑆})‘𝐴)))
366, 8, 34, 35syl3anc 1369 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn ((𝑋 × {𝑆})‘𝐴)))
37 fvconst2g 7059 . . . . . . 7 ((𝑆 ∈ Top ∧ 𝐴𝑋) → ((𝑋 × {𝑆})‘𝐴) = 𝑆)
38373adant1 1128 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((𝑋 × {𝑆})‘𝐴) = 𝑆)
3938oveq2d 7271 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((∏t‘(𝑋 × {𝑆})) Cn ((𝑋 × {𝑆})‘𝐴)) = ((∏t‘(𝑋 × {𝑆})) Cn 𝑆))
4036, 39eleqtrd 2841 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn 𝑆))
4123cnrest 22344 . . . 4 (((𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn 𝑆) ∧ (𝑅 Cn 𝑆) ⊆ (∏t‘(𝑋 × {𝑆}))) → ((𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ↾ (𝑅 Cn 𝑆)) ∈ (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆))
4240, 22, 41syl2anc 583 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ↾ (𝑅 Cn 𝑆)) ∈ (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆))
4333, 42eqeltrrd 2840 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝐴)) ∈ (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆))
4432, 43sseldd 3918 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝐴)) ∈ ((𝑆ko 𝑅) Cn 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {csn 4558   cuni 4836  cmpt 5153   × cxp 5578  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  t crest 17048  tcpt 17066  Topctop 21950  TopOnctopon 21967   Cn ccn 22283  ko cxko 22620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-pt 17072  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-cmp 22446  df-xko 22622
This theorem is referenced by:  cnmptkp  22739  xkofvcn  22743
  Copyright terms: Public domain W3C validator