MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkopjcn Structured version   Visualization version   GIF version

Theorem xkopjcn 23541
Description: Continuity of a projection map from the space of continuous functions. (This theorem can be strengthened, to joint continuity in both 𝑓 and 𝐴 as a function on (𝑆ko 𝑅) ×t 𝑅, but not without stronger assumptions on 𝑅; see xkofvcn 23569.) (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
xkopjcn.1 𝑋 = 𝑅
Assertion
Ref Expression
xkopjcn ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝐴)) ∈ ((𝑆ko 𝑅) Cn 𝑆))
Distinct variable groups:   𝐴,𝑓   𝑅,𝑓   𝑆,𝑓   𝑓,𝑋

Proof of Theorem xkopjcn
StepHypRef Expression
1 eqid 2729 . . . . . 6 (𝑆ko 𝑅) = (𝑆ko 𝑅)
21xkotopon 23485 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
323adant3 1132 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
4 xkopjcn.1 . . . . . . . . 9 𝑋 = 𝑅
54topopn 22791 . . . . . . . 8 (𝑅 ∈ Top → 𝑋𝑅)
653ad2ant1 1133 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → 𝑋𝑅)
7 fconst6g 6713 . . . . . . . 8 (𝑆 ∈ Top → (𝑋 × {𝑆}):𝑋⟶Top)
873ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑋 × {𝑆}):𝑋⟶Top)
9 pttop 23467 . . . . . . 7 ((𝑋𝑅 ∧ (𝑋 × {𝑆}):𝑋⟶Top) → (∏t‘(𝑋 × {𝑆})) ∈ Top)
106, 8, 9syl2anc 584 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (∏t‘(𝑋 × {𝑆})) ∈ Top)
11 eqid 2729 . . . . . . . . . 10 𝑆 = 𝑆
124, 11cnf 23131 . . . . . . . . 9 (𝑓 ∈ (𝑅 Cn 𝑆) → 𝑓:𝑋 𝑆)
13 uniexg 7676 . . . . . . . . . . 11 (𝑆 ∈ Top → 𝑆 ∈ V)
14133ad2ant2 1134 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → 𝑆 ∈ V)
1514, 6elmapd 8767 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ ( 𝑆m 𝑋) ↔ 𝑓:𝑋 𝑆))
1612, 15imbitrrid 246 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) → 𝑓 ∈ ( 𝑆m 𝑋)))
1716ssrdv 3941 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑅 Cn 𝑆) ⊆ ( 𝑆m 𝑋))
18 simp2 1137 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → 𝑆 ∈ Top)
19 eqid 2729 . . . . . . . . 9 (∏t‘(𝑋 × {𝑆})) = (∏t‘(𝑋 × {𝑆}))
2019, 11ptuniconst 23483 . . . . . . . 8 ((𝑋𝑅𝑆 ∈ Top) → ( 𝑆m 𝑋) = (∏t‘(𝑋 × {𝑆})))
216, 18, 20syl2anc 584 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ( 𝑆m 𝑋) = (∏t‘(𝑋 × {𝑆})))
2217, 21sseqtrd 3972 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑅 Cn 𝑆) ⊆ (∏t‘(𝑋 × {𝑆})))
23 eqid 2729 . . . . . . 7 (∏t‘(𝑋 × {𝑆})) = (∏t‘(𝑋 × {𝑆}))
2423restuni 23047 . . . . . 6 (((∏t‘(𝑋 × {𝑆})) ∈ Top ∧ (𝑅 Cn 𝑆) ⊆ (∏t‘(𝑋 × {𝑆}))) → (𝑅 Cn 𝑆) = ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)))
2510, 22, 24syl2anc 584 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑅 Cn 𝑆) = ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)))
2625fveq2d 6826 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (TopOn‘(𝑅 Cn 𝑆)) = (TopOn‘ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))))
273, 26eleqtrd 2830 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑆ko 𝑅) ∈ (TopOn‘ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))))
284, 19xkoptsub 23539 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆ko 𝑅))
29283adant3 1132 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆ko 𝑅))
30 eqid 2729 . . . 4 ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) = ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))
3130cnss1 23161 . . 3 (((𝑆ko 𝑅) ∈ (TopOn‘ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))) ∧ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆ko 𝑅)) → (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆) ⊆ ((𝑆ko 𝑅) Cn 𝑆))
3227, 29, 31syl2anc 584 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆) ⊆ ((𝑆ko 𝑅) Cn 𝑆))
3322resmptd 5991 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ↾ (𝑅 Cn 𝑆)) = (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝐴)))
34 simp3 1138 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
3523, 19ptpjcn 23496 . . . . . 6 ((𝑋𝑅 ∧ (𝑋 × {𝑆}):𝑋⟶Top ∧ 𝐴𝑋) → (𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn ((𝑋 × {𝑆})‘𝐴)))
366, 8, 34, 35syl3anc 1373 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn ((𝑋 × {𝑆})‘𝐴)))
37 fvconst2g 7138 . . . . . . 7 ((𝑆 ∈ Top ∧ 𝐴𝑋) → ((𝑋 × {𝑆})‘𝐴) = 𝑆)
38373adant1 1130 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((𝑋 × {𝑆})‘𝐴) = 𝑆)
3938oveq2d 7365 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((∏t‘(𝑋 × {𝑆})) Cn ((𝑋 × {𝑆})‘𝐴)) = ((∏t‘(𝑋 × {𝑆})) Cn 𝑆))
4036, 39eleqtrd 2830 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn 𝑆))
4123cnrest 23170 . . . 4 (((𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn 𝑆) ∧ (𝑅 Cn 𝑆) ⊆ (∏t‘(𝑋 × {𝑆}))) → ((𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ↾ (𝑅 Cn 𝑆)) ∈ (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆))
4240, 22, 41syl2anc 584 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ↾ (𝑅 Cn 𝑆)) ∈ (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆))
4333, 42eqeltrrd 2829 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝐴)) ∈ (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆))
4432, 43sseldd 3936 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝐴)) ∈ ((𝑆ko 𝑅) Cn 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  {csn 4577   cuni 4858  cmpt 5173   × cxp 5617  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  t crest 17324  tcpt 17342  Topctop 22778  TopOnctopon 22795   Cn ccn 23109  ko cxko 23446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-fin 8876  df-fi 9301  df-rest 17326  df-topgen 17347  df-pt 17348  df-top 22779  df-topon 22796  df-bases 22831  df-cn 23112  df-cmp 23272  df-xko 23448
This theorem is referenced by:  cnmptkp  23565  xkofvcn  23569
  Copyright terms: Public domain W3C validator