Proof of Theorem xkopjcn
Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. . . . . 6
⊢ (𝑆 ↑ko 𝑅) = (𝑆 ↑ko 𝑅) |
2 | 1 | xkotopon 22300 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆))) |
3 | 2 | 3adant3 1129 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑆 ↑ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆))) |
4 | | xkopjcn.1 |
. . . . . . . . 9
⊢ 𝑋 = ∪
𝑅 |
5 | 4 | topopn 21606 |
. . . . . . . 8
⊢ (𝑅 ∈ Top → 𝑋 ∈ 𝑅) |
6 | 5 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → 𝑋 ∈ 𝑅) |
7 | | fconst6g 6553 |
. . . . . . . 8
⊢ (𝑆 ∈ Top → (𝑋 × {𝑆}):𝑋⟶Top) |
8 | 7 | 3ad2ant2 1131 |
. . . . . . 7
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑋 × {𝑆}):𝑋⟶Top) |
9 | | pttop 22282 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑅 ∧ (𝑋 × {𝑆}):𝑋⟶Top) →
(∏t‘(𝑋 × {𝑆})) ∈ Top) |
10 | 6, 8, 9 | syl2anc 587 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (∏t‘(𝑋 × {𝑆})) ∈ Top) |
11 | | eqid 2758 |
. . . . . . . . . 10
⊢ ∪ 𝑆 =
∪ 𝑆 |
12 | 4, 11 | cnf 21946 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝑅 Cn 𝑆) → 𝑓:𝑋⟶∪ 𝑆) |
13 | | uniexg 7464 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Top → ∪ 𝑆
∈ V) |
14 | 13 | 3ad2ant2 1131 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → ∪ 𝑆 ∈ V) |
15 | 14, 6 | elmapd 8430 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑓 ∈ (∪ 𝑆 ↑m 𝑋) ↔ 𝑓:𝑋⟶∪ 𝑆)) |
16 | 12, 15 | syl5ibr 249 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) → 𝑓 ∈ (∪ 𝑆 ↑m 𝑋))) |
17 | 16 | ssrdv 3898 |
. . . . . . 7
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑅 Cn 𝑆) ⊆ (∪
𝑆 ↑m 𝑋)) |
18 | | simp2 1134 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ Top) |
19 | | eqid 2758 |
. . . . . . . . 9
⊢
(∏t‘(𝑋 × {𝑆})) = (∏t‘(𝑋 × {𝑆})) |
20 | 19, 11 | ptuniconst 22298 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑅 ∧ 𝑆 ∈ Top) → (∪ 𝑆
↑m 𝑋) =
∪ (∏t‘(𝑋 × {𝑆}))) |
21 | 6, 18, 20 | syl2anc 587 |
. . . . . . 7
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (∪ 𝑆 ↑m 𝑋) = ∪
(∏t‘(𝑋 × {𝑆}))) |
22 | 17, 21 | sseqtrd 3932 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑅 Cn 𝑆) ⊆ ∪
(∏t‘(𝑋 × {𝑆}))) |
23 | | eqid 2758 |
. . . . . . 7
⊢ ∪ (∏t‘(𝑋 × {𝑆})) = ∪
(∏t‘(𝑋 × {𝑆})) |
24 | 23 | restuni 21862 |
. . . . . 6
⊢
(((∏t‘(𝑋 × {𝑆})) ∈ Top ∧ (𝑅 Cn 𝑆) ⊆ ∪
(∏t‘(𝑋 × {𝑆}))) → (𝑅 Cn 𝑆) = ∪
((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))) |
25 | 10, 22, 24 | syl2anc 587 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑅 Cn 𝑆) = ∪
((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))) |
26 | 25 | fveq2d 6662 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (TopOn‘(𝑅 Cn 𝑆)) = (TopOn‘∪ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)))) |
27 | 3, 26 | eleqtrd 2854 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑆 ↑ko 𝑅) ∈ (TopOn‘∪ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)))) |
28 | 4, 19 | xkoptsub 22354 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ↑ko 𝑅)) |
29 | 28 | 3adant3 1129 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ↑ko 𝑅)) |
30 | | eqid 2758 |
. . . 4
⊢ ∪ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) = ∪
((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) |
31 | 30 | cnss1 21976 |
. . 3
⊢ (((𝑆 ↑ko 𝑅) ∈ (TopOn‘∪ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))) ∧ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ↑ko 𝑅)) → (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆) ⊆ ((𝑆 ↑ko 𝑅) Cn 𝑆)) |
32 | 27, 29, 31 | syl2anc 587 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆) ⊆ ((𝑆 ↑ko 𝑅) Cn 𝑆)) |
33 | 22 | resmptd 5880 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → ((𝑓 ∈ ∪
(∏t‘(𝑋 × {𝑆})) ↦ (𝑓‘𝐴)) ↾ (𝑅 Cn 𝑆)) = (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓‘𝐴))) |
34 | | simp3 1135 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
35 | 23, 19 | ptpjcn 22311 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑅 ∧ (𝑋 × {𝑆}):𝑋⟶Top ∧ 𝐴 ∈ 𝑋) → (𝑓 ∈ ∪
(∏t‘(𝑋 × {𝑆})) ↦ (𝑓‘𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn ((𝑋 × {𝑆})‘𝐴))) |
36 | 6, 8, 34, 35 | syl3anc 1368 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑓 ∈ ∪
(∏t‘(𝑋 × {𝑆})) ↦ (𝑓‘𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn ((𝑋 × {𝑆})‘𝐴))) |
37 | | fvconst2g 6955 |
. . . . . . 7
⊢ ((𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → ((𝑋 × {𝑆})‘𝐴) = 𝑆) |
38 | 37 | 3adant1 1127 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → ((𝑋 × {𝑆})‘𝐴) = 𝑆) |
39 | 38 | oveq2d 7166 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → ((∏t‘(𝑋 × {𝑆})) Cn ((𝑋 × {𝑆})‘𝐴)) = ((∏t‘(𝑋 × {𝑆})) Cn 𝑆)) |
40 | 36, 39 | eleqtrd 2854 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑓 ∈ ∪
(∏t‘(𝑋 × {𝑆})) ↦ (𝑓‘𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn 𝑆)) |
41 | 23 | cnrest 21985 |
. . . 4
⊢ (((𝑓 ∈ ∪ (∏t‘(𝑋 × {𝑆})) ↦ (𝑓‘𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn 𝑆) ∧ (𝑅 Cn 𝑆) ⊆ ∪
(∏t‘(𝑋 × {𝑆}))) → ((𝑓 ∈ ∪
(∏t‘(𝑋 × {𝑆})) ↦ (𝑓‘𝐴)) ↾ (𝑅 Cn 𝑆)) ∈ (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆)) |
42 | 40, 22, 41 | syl2anc 587 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → ((𝑓 ∈ ∪
(∏t‘(𝑋 × {𝑆})) ↦ (𝑓‘𝐴)) ↾ (𝑅 Cn 𝑆)) ∈ (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆)) |
43 | 33, 42 | eqeltrrd 2853 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓‘𝐴)) ∈ (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆)) |
44 | 32, 43 | sseldd 3893 |
1
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓‘𝐴)) ∈ ((𝑆 ↑ko 𝑅) Cn 𝑆)) |