MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkopjcn Structured version   Visualization version   GIF version

Theorem xkopjcn 23089
Description: Continuity of a projection map from the space of continuous functions. (This theorem can be strengthened, to joint continuity in both 𝑓 and 𝐴 as a function on (𝑆ko 𝑅) ×t 𝑅, but not without stronger assumptions on 𝑅; see xkofvcn 23117.) (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
xkopjcn.1 𝑋 = 𝑅
Assertion
Ref Expression
xkopjcn ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝐴)) ∈ ((𝑆ko 𝑅) Cn 𝑆))
Distinct variable groups:   𝐴,𝑓   𝑅,𝑓   𝑆,𝑓   𝑓,𝑋

Proof of Theorem xkopjcn
StepHypRef Expression
1 eqid 2731 . . . . . 6 (𝑆ko 𝑅) = (𝑆ko 𝑅)
21xkotopon 23033 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
323adant3 1132 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
4 xkopjcn.1 . . . . . . . . 9 𝑋 = 𝑅
54topopn 22337 . . . . . . . 8 (𝑅 ∈ Top → 𝑋𝑅)
653ad2ant1 1133 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → 𝑋𝑅)
7 fconst6g 6767 . . . . . . . 8 (𝑆 ∈ Top → (𝑋 × {𝑆}):𝑋⟶Top)
873ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑋 × {𝑆}):𝑋⟶Top)
9 pttop 23015 . . . . . . 7 ((𝑋𝑅 ∧ (𝑋 × {𝑆}):𝑋⟶Top) → (∏t‘(𝑋 × {𝑆})) ∈ Top)
106, 8, 9syl2anc 584 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (∏t‘(𝑋 × {𝑆})) ∈ Top)
11 eqid 2731 . . . . . . . . . 10 𝑆 = 𝑆
124, 11cnf 22679 . . . . . . . . 9 (𝑓 ∈ (𝑅 Cn 𝑆) → 𝑓:𝑋 𝑆)
13 uniexg 7713 . . . . . . . . . . 11 (𝑆 ∈ Top → 𝑆 ∈ V)
14133ad2ant2 1134 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → 𝑆 ∈ V)
1514, 6elmapd 8817 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ ( 𝑆m 𝑋) ↔ 𝑓:𝑋 𝑆))
1612, 15imbitrrid 245 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) → 𝑓 ∈ ( 𝑆m 𝑋)))
1716ssrdv 3984 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑅 Cn 𝑆) ⊆ ( 𝑆m 𝑋))
18 simp2 1137 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → 𝑆 ∈ Top)
19 eqid 2731 . . . . . . . . 9 (∏t‘(𝑋 × {𝑆})) = (∏t‘(𝑋 × {𝑆}))
2019, 11ptuniconst 23031 . . . . . . . 8 ((𝑋𝑅𝑆 ∈ Top) → ( 𝑆m 𝑋) = (∏t‘(𝑋 × {𝑆})))
216, 18, 20syl2anc 584 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ( 𝑆m 𝑋) = (∏t‘(𝑋 × {𝑆})))
2217, 21sseqtrd 4018 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑅 Cn 𝑆) ⊆ (∏t‘(𝑋 × {𝑆})))
23 eqid 2731 . . . . . . 7 (∏t‘(𝑋 × {𝑆})) = (∏t‘(𝑋 × {𝑆}))
2423restuni 22595 . . . . . 6 (((∏t‘(𝑋 × {𝑆})) ∈ Top ∧ (𝑅 Cn 𝑆) ⊆ (∏t‘(𝑋 × {𝑆}))) → (𝑅 Cn 𝑆) = ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)))
2510, 22, 24syl2anc 584 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑅 Cn 𝑆) = ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)))
2625fveq2d 6882 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (TopOn‘(𝑅 Cn 𝑆)) = (TopOn‘ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))))
273, 26eleqtrd 2834 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑆ko 𝑅) ∈ (TopOn‘ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))))
284, 19xkoptsub 23087 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆ko 𝑅))
29283adant3 1132 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆ko 𝑅))
30 eqid 2731 . . . 4 ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) = ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))
3130cnss1 22709 . . 3 (((𝑆ko 𝑅) ∈ (TopOn‘ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆))) ∧ ((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆ko 𝑅)) → (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆) ⊆ ((𝑆ko 𝑅) Cn 𝑆))
3227, 29, 31syl2anc 584 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆) ⊆ ((𝑆ko 𝑅) Cn 𝑆))
3322resmptd 6030 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ↾ (𝑅 Cn 𝑆)) = (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝐴)))
34 simp3 1138 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
3523, 19ptpjcn 23044 . . . . . 6 ((𝑋𝑅 ∧ (𝑋 × {𝑆}):𝑋⟶Top ∧ 𝐴𝑋) → (𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn ((𝑋 × {𝑆})‘𝐴)))
366, 8, 34, 35syl3anc 1371 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn ((𝑋 × {𝑆})‘𝐴)))
37 fvconst2g 7187 . . . . . . 7 ((𝑆 ∈ Top ∧ 𝐴𝑋) → ((𝑋 × {𝑆})‘𝐴) = 𝑆)
38373adant1 1130 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((𝑋 × {𝑆})‘𝐴) = 𝑆)
3938oveq2d 7409 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((∏t‘(𝑋 × {𝑆})) Cn ((𝑋 × {𝑆})‘𝐴)) = ((∏t‘(𝑋 × {𝑆})) Cn 𝑆))
4036, 39eleqtrd 2834 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn 𝑆))
4123cnrest 22718 . . . 4 (((𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ∈ ((∏t‘(𝑋 × {𝑆})) Cn 𝑆) ∧ (𝑅 Cn 𝑆) ⊆ (∏t‘(𝑋 × {𝑆}))) → ((𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ↾ (𝑅 Cn 𝑆)) ∈ (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆))
4240, 22, 41syl2anc 584 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → ((𝑓 (∏t‘(𝑋 × {𝑆})) ↦ (𝑓𝐴)) ↾ (𝑅 Cn 𝑆)) ∈ (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆))
4333, 42eqeltrrd 2833 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝐴)) ∈ (((∏t‘(𝑋 × {𝑆})) ↾t (𝑅 Cn 𝑆)) Cn 𝑆))
4432, 43sseldd 3979 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝐴)) ∈ ((𝑆ko 𝑅) Cn 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3473  wss 3944  {csn 4622   cuni 4901  cmpt 5224   × cxp 5667  cres 5671  wf 6528  cfv 6532  (class class class)co 7393  m cmap 8803  t crest 17348  tcpt 17366  Topctop 22324  TopOnctopon 22341   Cn ccn 22657  ko cxko 22994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-1o 8448  df-er 8686  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-fin 8926  df-fi 9388  df-rest 17350  df-topgen 17371  df-pt 17372  df-top 22325  df-topon 22342  df-bases 22378  df-cn 22660  df-cmp 22820  df-xko 22996
This theorem is referenced by:  cnmptkp  23113  xkofvcn  23117
  Copyright terms: Public domain W3C validator