Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kgen2cn | Structured version Visualization version GIF version |
Description: A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
kgen2cn | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop1 22381 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
2 | toptopon2 22057 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
3 | 1, 2 | sylib 217 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
4 | kgentopon 22679 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝑘Gen‘𝐽) ∈ (TopOn‘∪ 𝐽)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝑘Gen‘𝐽) ∈ (TopOn‘∪ 𝐽)) |
6 | kgenss 22684 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
8 | eqid 2740 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
9 | 8 | cnss1 22417 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ (TopOn‘∪ 𝐽) ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn 𝐾)) |
10 | 5, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn 𝐾)) |
11 | kgenf 22682 | . . . . . 6 ⊢ 𝑘Gen:Top⟶Top | |
12 | ffn 6597 | . . . . . 6 ⊢ (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ 𝑘Gen Fn Top |
14 | fnfvelrn 6953 | . . . . 5 ⊢ ((𝑘Gen Fn Top ∧ 𝐽 ∈ Top) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) | |
15 | 13, 1, 14 | sylancr 587 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) |
16 | cntop2 22382 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
17 | kgencn3 22699 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → ((𝑘Gen‘𝐽) Cn 𝐾) = ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) | |
18 | 15, 16, 17 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝑘Gen‘𝐽) Cn 𝐾) = ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
19 | 10, 18 | sseqtrd 3966 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
20 | id 22 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
21 | 19, 20 | sseldd 3927 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ∪ cuni 4845 ran crn 5590 Fn wfn 6426 ⟶wf 6427 ‘cfv 6431 (class class class)co 7269 Topctop 22032 TopOnctopon 22049 Cn ccn 22365 𝑘Genckgen 22674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-1o 8282 df-er 8473 df-map 8592 df-en 8709 df-dom 8710 df-fin 8712 df-fi 9140 df-rest 17123 df-topgen 17144 df-top 22033 df-topon 22050 df-bases 22086 df-cn 22368 df-cmp 22528 df-kgen 22675 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |