| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kgen2cn | Structured version Visualization version GIF version | ||
| Description: A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| kgen2cn | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 23175 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 2 | toptopon2 22853 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 4 | kgentopon 23473 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝑘Gen‘𝐽) ∈ (TopOn‘∪ 𝐽)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝑘Gen‘𝐽) ∈ (TopOn‘∪ 𝐽)) |
| 6 | kgenss 23478 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
| 8 | eqid 2733 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 8 | cnss1 23211 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ (TopOn‘∪ 𝐽) ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn 𝐾)) |
| 10 | 5, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn 𝐾)) |
| 11 | kgenf 23476 | . . . . . 6 ⊢ 𝑘Gen:Top⟶Top | |
| 12 | ffn 6659 | . . . . . 6 ⊢ (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ 𝑘Gen Fn Top |
| 14 | fnfvelrn 7022 | . . . . 5 ⊢ ((𝑘Gen Fn Top ∧ 𝐽 ∈ Top) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) | |
| 15 | 13, 1, 14 | sylancr 587 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) |
| 16 | cntop2 23176 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 17 | kgencn3 23493 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → ((𝑘Gen‘𝐽) Cn 𝐾) = ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) | |
| 18 | 15, 16, 17 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝑘Gen‘𝐽) Cn 𝐾) = ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
| 19 | 10, 18 | sseqtrd 3967 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
| 20 | id 22 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 21 | 19, 20 | sseldd 3931 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ∪ cuni 4860 ran crn 5622 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 Topctop 22828 TopOnctopon 22845 Cn ccn 23159 𝑘Genckgen 23468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-1o 8394 df-map 8761 df-en 8880 df-dom 8881 df-fin 8883 df-fi 9306 df-rest 17333 df-topgen 17354 df-top 22829 df-topon 22846 df-bases 22881 df-cn 23162 df-cmp 23322 df-kgen 23469 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |