MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgen2cn Structured version   Visualization version   GIF version

Theorem kgen2cn 22700
Description: A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgen2cn (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾)))

Proof of Theorem kgen2cn
StepHypRef Expression
1 cntop1 22381 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2 toptopon2 22057 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 217 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘ 𝐽))
4 kgentopon 22679 . . . . 5 (𝐽 ∈ (TopOn‘ 𝐽) → (𝑘Gen‘𝐽) ∈ (TopOn‘ 𝐽))
53, 4syl 17 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝑘Gen‘𝐽) ∈ (TopOn‘ 𝐽))
6 kgenss 22684 . . . . 5 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
71, 6syl 17 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ⊆ (𝑘Gen‘𝐽))
8 eqid 2740 . . . . 5 𝐽 = 𝐽
98cnss1 22417 . . . 4 (((𝑘Gen‘𝐽) ∈ (TopOn‘ 𝐽) ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn 𝐾))
105, 7, 9syl2anc 584 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn 𝐾))
11 kgenf 22682 . . . . . 6 𝑘Gen:Top⟶Top
12 ffn 6597 . . . . . 6 (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top)
1311, 12ax-mp 5 . . . . 5 𝑘Gen Fn Top
14 fnfvelrn 6953 . . . . 5 ((𝑘Gen Fn Top ∧ 𝐽 ∈ Top) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen)
1513, 1, 14sylancr 587 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen)
16 cntop2 22382 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
17 kgencn3 22699 . . . 4 (((𝑘Gen‘𝐽) ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → ((𝑘Gen‘𝐽) Cn 𝐾) = ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾)))
1815, 16, 17syl2anc 584 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝑘Gen‘𝐽) Cn 𝐾) = ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾)))
1910, 18sseqtrd 3966 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾)))
20 id 22 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
2119, 20sseldd 3927 1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  wss 3892   cuni 4845  ran crn 5590   Fn wfn 6426  wf 6427  cfv 6431  (class class class)co 7269  Topctop 22032  TopOnctopon 22049   Cn ccn 22365  𝑘Genckgen 22674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-1o 8282  df-er 8473  df-map 8592  df-en 8709  df-dom 8710  df-fin 8712  df-fi 9140  df-rest 17123  df-topgen 17144  df-top 22033  df-topon 22050  df-bases 22086  df-cn 22368  df-cmp 22528  df-kgen 22675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator