MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgen2cn Structured version   Visualization version   GIF version

Theorem kgen2cn 23582
Description: A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgen2cn (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾)))

Proof of Theorem kgen2cn
StepHypRef Expression
1 cntop1 23263 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
2 toptopon2 22939 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 218 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘ 𝐽))
4 kgentopon 23561 . . . . 5 (𝐽 ∈ (TopOn‘ 𝐽) → (𝑘Gen‘𝐽) ∈ (TopOn‘ 𝐽))
53, 4syl 17 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝑘Gen‘𝐽) ∈ (TopOn‘ 𝐽))
6 kgenss 23566 . . . . 5 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
71, 6syl 17 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ⊆ (𝑘Gen‘𝐽))
8 eqid 2734 . . . . 5 𝐽 = 𝐽
98cnss1 23299 . . . 4 (((𝑘Gen‘𝐽) ∈ (TopOn‘ 𝐽) ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn 𝐾))
105, 7, 9syl2anc 584 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn 𝐾))
11 kgenf 23564 . . . . . 6 𝑘Gen:Top⟶Top
12 ffn 6736 . . . . . 6 (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top)
1311, 12ax-mp 5 . . . . 5 𝑘Gen Fn Top
14 fnfvelrn 7099 . . . . 5 ((𝑘Gen Fn Top ∧ 𝐽 ∈ Top) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen)
1513, 1, 14sylancr 587 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen)
16 cntop2 23264 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
17 kgencn3 23581 . . . 4 (((𝑘Gen‘𝐽) ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → ((𝑘Gen‘𝐽) Cn 𝐾) = ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾)))
1815, 16, 17syl2anc 584 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝑘Gen‘𝐽) Cn 𝐾) = ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾)))
1910, 18sseqtrd 4035 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾)))
20 id 22 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
2119, 20sseldd 3995 1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  wss 3962   cuni 4911  ran crn 5689   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  Topctop 22914  TopOnctopon 22931   Cn ccn 23247  𝑘Genckgen 23556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-1o 8504  df-map 8866  df-en 8984  df-dom 8985  df-fin 8987  df-fi 9448  df-rest 17468  df-topgen 17489  df-top 22915  df-topon 22932  df-bases 22968  df-cn 23250  df-cmp 23410  df-kgen 23557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator