![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kgen2cn | Structured version Visualization version GIF version |
Description: A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
kgen2cn | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop1 23263 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
2 | toptopon2 22939 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
4 | kgentopon 23561 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝑘Gen‘𝐽) ∈ (TopOn‘∪ 𝐽)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝑘Gen‘𝐽) ∈ (TopOn‘∪ 𝐽)) |
6 | kgenss 23566 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
8 | eqid 2734 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
9 | 8 | cnss1 23299 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ (TopOn‘∪ 𝐽) ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn 𝐾)) |
10 | 5, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn 𝐾)) |
11 | kgenf 23564 | . . . . . 6 ⊢ 𝑘Gen:Top⟶Top | |
12 | ffn 6736 | . . . . . 6 ⊢ (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ 𝑘Gen Fn Top |
14 | fnfvelrn 7099 | . . . . 5 ⊢ ((𝑘Gen Fn Top ∧ 𝐽 ∈ Top) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) | |
15 | 13, 1, 14 | sylancr 587 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) |
16 | cntop2 23264 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
17 | kgencn3 23581 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → ((𝑘Gen‘𝐽) Cn 𝐾) = ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) | |
18 | 15, 16, 17 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝑘Gen‘𝐽) Cn 𝐾) = ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
19 | 10, 18 | sseqtrd 4035 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
20 | id 22 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
21 | 19, 20 | sseldd 3995 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 ∪ cuni 4911 ran crn 5689 Fn wfn 6557 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 Topctop 22914 TopOnctopon 22931 Cn ccn 23247 𝑘Genckgen 23556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-1o 8504 df-map 8866 df-en 8984 df-dom 8985 df-fin 8987 df-fi 9448 df-rest 17468 df-topgen 17489 df-top 22915 df-topon 22932 df-bases 22968 df-cn 23250 df-cmp 23410 df-kgen 23557 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |