| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kgen2cn | Structured version Visualization version GIF version | ||
| Description: A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| kgen2cn | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 23176 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 2 | toptopon2 22854 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 4 | kgentopon 23474 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝑘Gen‘𝐽) ∈ (TopOn‘∪ 𝐽)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝑘Gen‘𝐽) ∈ (TopOn‘∪ 𝐽)) |
| 6 | kgenss 23479 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
| 8 | eqid 2735 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 8 | cnss1 23212 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ (TopOn‘∪ 𝐽) ∧ 𝐽 ⊆ (𝑘Gen‘𝐽)) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn 𝐾)) |
| 10 | 5, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn 𝐾)) |
| 11 | kgenf 23477 | . . . . . 6 ⊢ 𝑘Gen:Top⟶Top | |
| 12 | ffn 6705 | . . . . . 6 ⊢ (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top) | |
| 13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ 𝑘Gen Fn Top |
| 14 | fnfvelrn 7069 | . . . . 5 ⊢ ((𝑘Gen Fn Top ∧ 𝐽 ∈ Top) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) | |
| 15 | 13, 1, 14 | sylancr 587 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) |
| 16 | cntop2 23177 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 17 | kgencn3 23494 | . . . 4 ⊢ (((𝑘Gen‘𝐽) ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → ((𝑘Gen‘𝐽) Cn 𝐾) = ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) | |
| 18 | 15, 16, 17 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ((𝑘Gen‘𝐽) Cn 𝐾) = ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
| 19 | 10, 18 | sseqtrd 3995 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 Cn 𝐾) ⊆ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
| 20 | id 22 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 21 | 19, 20 | sseldd 3959 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 ran crn 5655 Fn wfn 6525 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 Topctop 22829 TopOnctopon 22846 Cn ccn 23160 𝑘Genckgen 23469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-1o 8478 df-map 8840 df-en 8958 df-dom 8959 df-fin 8961 df-fi 9421 df-rest 17434 df-topgen 17455 df-top 22830 df-topon 22847 df-bases 22882 df-cn 23163 df-cmp 23323 df-kgen 23470 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |