Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumadd | Structured version Visualization version GIF version |
Description: The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
Ref | Expression |
---|---|
gsumadd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumadd.z | ⊢ 0 = (0g‘𝐺) |
gsumadd.p | ⊢ + = (+g‘𝐺) |
gsumadd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumadd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumadd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsumadd.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
gsumadd.fn | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
gsumadd.hn | ⊢ (𝜑 → 𝐻 finSupp 0 ) |
Ref | Expression |
---|---|
gsumadd | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumadd.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumadd.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsumadd.p | . 2 ⊢ + = (+g‘𝐺) | |
4 | eqid 2740 | . 2 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
5 | gsumadd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
6 | cmnmnd 19398 | . . 3 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
8 | gsumadd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | gsumadd.fn | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
10 | gsumadd.hn | . 2 ⊢ (𝜑 → 𝐻 finSupp 0 ) | |
11 | 1 | submid 18445 | . . 3 ⊢ (𝐺 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝐺)) |
12 | 7, 11 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ∈ (SubMnd‘𝐺)) |
13 | ssid 3948 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
14 | 1, 4 | cntzcmn 19437 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ 𝐵 ⊆ 𝐵) → ((Cntz‘𝐺)‘𝐵) = 𝐵) |
15 | 5, 13, 14 | sylancl 586 | . . 3 ⊢ (𝜑 → ((Cntz‘𝐺)‘𝐵) = 𝐵) |
16 | 13, 15 | sseqtrrid 3979 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ((Cntz‘𝐺)‘𝐵)) |
17 | gsumadd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
18 | gsumadd.h | . 2 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
19 | 1, 2, 3, 4, 7, 8, 9, 10, 12, 16, 17, 18 | gsumzadd 19519 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 class class class wbr 5079 ⟶wf 6427 ‘cfv 6431 (class class class)co 7269 ∘f cof 7523 finSupp cfsupp 9104 Basecbs 16908 +gcplusg 16958 0gc0g 17146 Σg cgsu 17147 Mndcmnd 18381 SubMndcsubmnd 18425 Cntzccntz 18917 CMndccmn 19382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-om 7705 df-1st 7822 df-2nd 7823 df-supp 7967 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-fsupp 9105 df-oi 9245 df-card 9696 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-n0 12232 df-z 12318 df-uz 12580 df-fz 13237 df-fzo 13380 df-seq 13718 df-hash 14041 df-sets 16861 df-slot 16879 df-ndx 16891 df-base 16909 df-ress 16938 df-plusg 16971 df-0g 17148 df-gsum 17149 df-mgm 18322 df-sgrp 18371 df-mnd 18382 df-submnd 18427 df-cntz 18919 df-cmn 19384 |
This theorem is referenced by: gsummptfsadd 19521 gsumsub 19545 frlmup1 21001 evlslem1 21288 mhpmulcl 21335 tsmsadd 23294 tdeglem3 25218 tdeglem3OLD 25219 |
Copyright terms: Public domain | W3C validator |