| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumadd | Structured version Visualization version GIF version | ||
| Description: The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumadd.z | ⊢ 0 = (0g‘𝐺) |
| gsumadd.p | ⊢ + = (+g‘𝐺) |
| gsumadd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumadd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumadd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| gsumadd.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| gsumadd.fn | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| gsumadd.hn | ⊢ (𝜑 → 𝐻 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumadd | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumadd.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumadd.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumadd.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | eqid 2729 | . 2 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 5 | gsumadd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 6 | cmnmnd 19694 | . . 3 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 8 | gsumadd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 9 | gsumadd.fn | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 10 | gsumadd.hn | . 2 ⊢ (𝜑 → 𝐻 finSupp 0 ) | |
| 11 | 1 | submid 18702 | . . 3 ⊢ (𝐺 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝐺)) |
| 12 | 7, 11 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ∈ (SubMnd‘𝐺)) |
| 13 | ssid 3960 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
| 14 | 1, 4 | cntzcmn 19737 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ 𝐵 ⊆ 𝐵) → ((Cntz‘𝐺)‘𝐵) = 𝐵) |
| 15 | 5, 13, 14 | sylancl 586 | . . 3 ⊢ (𝜑 → ((Cntz‘𝐺)‘𝐵) = 𝐵) |
| 16 | 13, 15 | sseqtrrid 3981 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ((Cntz‘𝐺)‘𝐵)) |
| 17 | gsumadd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 18 | gsumadd.h | . 2 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
| 19 | 1, 2, 3, 4, 7, 8, 9, 10, 12, 16, 17, 18 | gsumzadd 19819 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 finSupp cfsupp 9270 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Σg cgsu 17362 Mndcmnd 18626 SubMndcsubmnd 18674 Cntzccntz 19212 CMndccmn 19677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-0g 17363 df-gsum 17364 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-cntz 19214 df-cmn 19679 |
| This theorem is referenced by: gsummptfsadd 19821 gsumsub 19845 frlmup1 21723 evlslem1 22005 mhpmulcl 22052 tsmsadd 24050 tdeglem3 25980 |
| Copyright terms: Public domain | W3C validator |