| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumadd | Structured version Visualization version GIF version | ||
| Description: The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumadd.z | ⊢ 0 = (0g‘𝐺) |
| gsumadd.p | ⊢ + = (+g‘𝐺) |
| gsumadd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumadd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumadd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| gsumadd.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| gsumadd.fn | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| gsumadd.hn | ⊢ (𝜑 → 𝐻 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumadd | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumadd.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumadd.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumadd.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | eqid 2736 | . 2 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 5 | gsumadd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 6 | cmnmnd 19783 | . . 3 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 8 | gsumadd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 9 | gsumadd.fn | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 10 | gsumadd.hn | . 2 ⊢ (𝜑 → 𝐻 finSupp 0 ) | |
| 11 | 1 | submid 18793 | . . 3 ⊢ (𝐺 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝐺)) |
| 12 | 7, 11 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ∈ (SubMnd‘𝐺)) |
| 13 | ssid 3986 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
| 14 | 1, 4 | cntzcmn 19826 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ 𝐵 ⊆ 𝐵) → ((Cntz‘𝐺)‘𝐵) = 𝐵) |
| 15 | 5, 13, 14 | sylancl 586 | . . 3 ⊢ (𝜑 → ((Cntz‘𝐺)‘𝐵) = 𝐵) |
| 16 | 13, 15 | sseqtrrid 4007 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ((Cntz‘𝐺)‘𝐵)) |
| 17 | gsumadd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 18 | gsumadd.h | . 2 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
| 19 | 1, 2, 3, 4, 7, 8, 9, 10, 12, 16, 17, 18 | gsumzadd 19908 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 finSupp cfsupp 9378 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Σg cgsu 17459 Mndcmnd 18717 SubMndcsubmnd 18765 Cntzccntz 19303 CMndccmn 19766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-gsum 17461 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-cntz 19305 df-cmn 19768 |
| This theorem is referenced by: gsummptfsadd 19910 gsumsub 19934 frlmup1 21763 evlslem1 22045 mhpmulcl 22092 tsmsadd 24090 tdeglem3 26021 |
| Copyright terms: Public domain | W3C validator |