| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumadd | Structured version Visualization version GIF version | ||
| Description: The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumadd.z | ⊢ 0 = (0g‘𝐺) |
| gsumadd.p | ⊢ + = (+g‘𝐺) |
| gsumadd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumadd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumadd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| gsumadd.h | ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| gsumadd.fn | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| gsumadd.hn | ⊢ (𝜑 → 𝐻 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumadd | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumadd.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumadd.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumadd.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | eqid 2731 | . 2 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 5 | gsumadd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 6 | cmnmnd 19704 | . . 3 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 8 | gsumadd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 9 | gsumadd.fn | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 10 | gsumadd.hn | . 2 ⊢ (𝜑 → 𝐻 finSupp 0 ) | |
| 11 | 1 | submid 18713 | . . 3 ⊢ (𝐺 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝐺)) |
| 12 | 7, 11 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ∈ (SubMnd‘𝐺)) |
| 13 | ssid 3952 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
| 14 | 1, 4 | cntzcmn 19747 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ 𝐵 ⊆ 𝐵) → ((Cntz‘𝐺)‘𝐵) = 𝐵) |
| 15 | 5, 13, 14 | sylancl 586 | . . 3 ⊢ (𝜑 → ((Cntz‘𝐺)‘𝐵) = 𝐵) |
| 16 | 13, 15 | sseqtrrid 3973 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ((Cntz‘𝐺)‘𝐵)) |
| 17 | gsumadd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 18 | gsumadd.h | . 2 ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | |
| 19 | 1, 2, 3, 4, 7, 8, 9, 10, 12, 16, 17, 18 | gsumzadd 19829 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5086 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 finSupp cfsupp 9240 Basecbs 17115 +gcplusg 17156 0gc0g 17338 Σg cgsu 17339 Mndcmnd 18637 SubMndcsubmnd 18685 Cntzccntz 19222 CMndccmn 19687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-gsum 17341 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-cntz 19224 df-cmn 19689 |
| This theorem is referenced by: gsummptfsadd 19831 gsumsub 19855 frlmup1 21730 evlslem1 22012 mhpmulcl 22059 tsmsadd 24057 tdeglem3 25986 |
| Copyright terms: Public domain | W3C validator |