| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofidf1a | Structured version Visualization version GIF version | ||
| Description: If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the object part of 𝐹 is injective, and the object part of 𝐺 is surjective. (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofidvala.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| cofidvala.b | ⊢ 𝐵 = (Base‘𝐷) |
| cofidvala.f | ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| cofidvala.g | ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) |
| cofidvala.o | ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) |
| cofidf1a.c | ⊢ 𝐶 = (Base‘𝐸) |
| Ref | Expression |
|---|---|
| cofidf1a | ⊢ (𝜑 → ((1st ‘𝐹):𝐵–1-1→𝐶 ∧ (1st ‘𝐺):𝐶–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidvala.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 2 | cofidf1a.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
| 3 | cofidvala.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) | |
| 4 | 3 | func1st2nd 48993 | . . . 4 ⊢ (𝜑 → (1st ‘𝐹)(𝐷 Func 𝐸)(2nd ‘𝐹)) |
| 5 | 1, 2, 4 | funcf1 17834 | . . 3 ⊢ (𝜑 → (1st ‘𝐹):𝐵⟶𝐶) |
| 6 | cofidvala.i | . . . . 5 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 7 | cofidvala.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) | |
| 8 | cofidvala.o | . . . . 5 ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 10 | 6, 1, 3, 7, 8, 9 | cofidvala 49033 | . . . 4 ⊢ (𝜑 → (((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑧))))) |
| 11 | 10 | simpld 494 | . . 3 ⊢ (𝜑 → ((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵)) |
| 12 | fcof1 7269 | . . 3 ⊢ (((1st ‘𝐹):𝐵⟶𝐶 ∧ ((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵)) → (1st ‘𝐹):𝐵–1-1→𝐶) | |
| 13 | 5, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (1st ‘𝐹):𝐵–1-1→𝐶) |
| 14 | 7 | func1st2nd 48993 | . . . 4 ⊢ (𝜑 → (1st ‘𝐺)(𝐸 Func 𝐷)(2nd ‘𝐺)) |
| 15 | 2, 1, 14 | funcf1 17834 | . . 3 ⊢ (𝜑 → (1st ‘𝐺):𝐶⟶𝐵) |
| 16 | fcofo 7270 | . . 3 ⊢ (((1st ‘𝐺):𝐶⟶𝐵 ∧ (1st ‘𝐹):𝐵⟶𝐶 ∧ ((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵)) → (1st ‘𝐺):𝐶–onto→𝐵) | |
| 17 | 15, 5, 11, 16 | syl3anc 1373 | . 2 ⊢ (𝜑 → (1st ‘𝐺):𝐶–onto→𝐵) |
| 18 | 13, 17 | jca 511 | 1 ⊢ (𝜑 → ((1st ‘𝐹):𝐵–1-1→𝐶 ∧ (1st ‘𝐺):𝐶–onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5196 I cid 5540 × cxp 5644 ↾ cres 5648 ∘ ccom 5650 ⟶wf 6515 –1-1→wf1 6516 –onto→wfo 6517 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 1st c1st 7975 2nd c2nd 7976 Basecbs 17185 Hom chom 17237 Func cfunc 17822 idfunccidfu 17823 ∘func ccofu 17824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-map 8805 df-ixp 8875 df-func 17826 df-idfu 17827 df-cofu 17828 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |