Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofidf1a Structured version   Visualization version   GIF version

Theorem cofidf1a 49243
Description: If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the object part of 𝐹 is injective, and the object part of 𝐺 is surjective. (Contributed by Zhi Wang, 15-Nov-2025.)
Hypotheses
Ref Expression
cofidvala.i 𝐼 = (idfunc𝐷)
cofidvala.b 𝐵 = (Base‘𝐷)
cofidvala.f (𝜑𝐹 ∈ (𝐷 Func 𝐸))
cofidvala.g (𝜑𝐺 ∈ (𝐸 Func 𝐷))
cofidvala.o (𝜑 → (𝐺func 𝐹) = 𝐼)
cofidf1a.c 𝐶 = (Base‘𝐸)
Assertion
Ref Expression
cofidf1a (𝜑 → ((1st𝐹):𝐵1-1𝐶 ∧ (1st𝐺):𝐶onto𝐵))

Proof of Theorem cofidf1a
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofidvala.b . . . 4 𝐵 = (Base‘𝐷)
2 cofidf1a.c . . . 4 𝐶 = (Base‘𝐸)
3 cofidvala.f . . . . 5 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
43func1st2nd 49201 . . . 4 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
51, 2, 4funcf1 17775 . . 3 (𝜑 → (1st𝐹):𝐵𝐶)
6 cofidvala.i . . . . 5 𝐼 = (idfunc𝐷)
7 cofidvala.g . . . . 5 (𝜑𝐺 ∈ (𝐸 Func 𝐷))
8 cofidvala.o . . . . 5 (𝜑 → (𝐺func 𝐹) = 𝐼)
9 eqid 2733 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
106, 1, 3, 7, 8, 9cofidvala 49241 . . . 4 (𝜑 → (((1st𝐺) ∘ (1st𝐹)) = ( I ↾ 𝐵) ∧ (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑧)))))
1110simpld 494 . . 3 (𝜑 → ((1st𝐺) ∘ (1st𝐹)) = ( I ↾ 𝐵))
12 fcof1 7227 . . 3 (((1st𝐹):𝐵𝐶 ∧ ((1st𝐺) ∘ (1st𝐹)) = ( I ↾ 𝐵)) → (1st𝐹):𝐵1-1𝐶)
135, 11, 12syl2anc 584 . 2 (𝜑 → (1st𝐹):𝐵1-1𝐶)
147func1st2nd 49201 . . . 4 (𝜑 → (1st𝐺)(𝐸 Func 𝐷)(2nd𝐺))
152, 1, 14funcf1 17775 . . 3 (𝜑 → (1st𝐺):𝐶𝐵)
16 fcofo 7228 . . 3 (((1st𝐺):𝐶𝐵 ∧ (1st𝐹):𝐵𝐶 ∧ ((1st𝐺) ∘ (1st𝐹)) = ( I ↾ 𝐵)) → (1st𝐺):𝐶onto𝐵)
1715, 5, 11, 16syl3anc 1373 . 2 (𝜑 → (1st𝐺):𝐶onto𝐵)
1813, 17jca 511 1 (𝜑 → ((1st𝐹):𝐵1-1𝐶 ∧ (1st𝐺):𝐶onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cmpt 5174   I cid 5513   × cxp 5617  cres 5621  ccom 5623  wf 6482  1-1wf1 6483  ontowfo 6484  cfv 6486  (class class class)co 7352  cmpo 7354  1st c1st 7925  2nd c2nd 7926  Basecbs 17122  Hom chom 17174   Func cfunc 17763  idfunccidfu 17764  func ccofu 17765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828  df-func 17767  df-idfu 17768  df-cofu 17769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator