Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofidf1a Structured version   Visualization version   GIF version

Theorem cofidf1a 49149
Description: If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the object part of 𝐹 is injective, and the object part of 𝐺 is surjective. (Contributed by Zhi Wang, 15-Nov-2025.)
Hypotheses
Ref Expression
cofidvala.i 𝐼 = (idfunc𝐷)
cofidvala.b 𝐵 = (Base‘𝐷)
cofidvala.f (𝜑𝐹 ∈ (𝐷 Func 𝐸))
cofidvala.g (𝜑𝐺 ∈ (𝐸 Func 𝐷))
cofidvala.o (𝜑 → (𝐺func 𝐹) = 𝐼)
cofidf1a.c 𝐶 = (Base‘𝐸)
Assertion
Ref Expression
cofidf1a (𝜑 → ((1st𝐹):𝐵1-1𝐶 ∧ (1st𝐺):𝐶onto𝐵))

Proof of Theorem cofidf1a
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofidvala.b . . . 4 𝐵 = (Base‘𝐷)
2 cofidf1a.c . . . 4 𝐶 = (Base‘𝐸)
3 cofidvala.f . . . . 5 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
43func1st2nd 49107 . . . 4 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
51, 2, 4funcf1 17770 . . 3 (𝜑 → (1st𝐹):𝐵𝐶)
6 cofidvala.i . . . . 5 𝐼 = (idfunc𝐷)
7 cofidvala.g . . . . 5 (𝜑𝐺 ∈ (𝐸 Func 𝐷))
8 cofidvala.o . . . . 5 (𝜑 → (𝐺func 𝐹) = 𝐼)
9 eqid 2731 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
106, 1, 3, 7, 8, 9cofidvala 49147 . . . 4 (𝜑 → (((1st𝐺) ∘ (1st𝐹)) = ( I ↾ 𝐵) ∧ (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑧)))))
1110simpld 494 . . 3 (𝜑 → ((1st𝐺) ∘ (1st𝐹)) = ( I ↾ 𝐵))
12 fcof1 7221 . . 3 (((1st𝐹):𝐵𝐶 ∧ ((1st𝐺) ∘ (1st𝐹)) = ( I ↾ 𝐵)) → (1st𝐹):𝐵1-1𝐶)
135, 11, 12syl2anc 584 . 2 (𝜑 → (1st𝐹):𝐵1-1𝐶)
147func1st2nd 49107 . . . 4 (𝜑 → (1st𝐺)(𝐸 Func 𝐷)(2nd𝐺))
152, 1, 14funcf1 17770 . . 3 (𝜑 → (1st𝐺):𝐶𝐵)
16 fcofo 7222 . . 3 (((1st𝐺):𝐶𝐵 ∧ (1st𝐹):𝐵𝐶 ∧ ((1st𝐺) ∘ (1st𝐹)) = ( I ↾ 𝐵)) → (1st𝐺):𝐶onto𝐵)
1715, 5, 11, 16syl3anc 1373 . 2 (𝜑 → (1st𝐺):𝐶onto𝐵)
1813, 17jca 511 1 (𝜑 → ((1st𝐹):𝐵1-1𝐶 ∧ (1st𝐺):𝐶onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cmpt 5172   I cid 5510   × cxp 5614  cres 5618  ccom 5620  wf 6477  1-1wf1 6478  ontowfo 6479  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  Basecbs 17117  Hom chom 17169   Func cfunc 17758  idfunccidfu 17759  func ccofu 17760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-func 17762  df-idfu 17763  df-cofu 17764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator