| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofidvala | Structured version Visualization version GIF version | ||
| Description: The property "𝐹 is a section of 𝐺 " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofidvala.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| cofidvala.b | ⊢ 𝐵 = (Base‘𝐷) |
| cofidvala.f | ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| cofidvala.g | ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) |
| cofidvala.o | ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) |
| cofidvala.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| Ref | Expression |
|---|---|
| cofidvala | ⊢ (𝜑 → (((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidvala.o | . . 3 ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) | |
| 2 | cofidvala.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | cofidvala.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) | |
| 4 | cofidvala.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) | |
| 5 | 2, 3, 4 | cofuval 17786 | . . 3 ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))〉) |
| 6 | cofidvala.i | . . . 4 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 7 | 3 | func1st2nd 49107 | . . . . 5 ⊢ (𝜑 → (1st ‘𝐹)(𝐷 Func 𝐸)(2nd ‘𝐹)) |
| 8 | 7 | funcrcl2 49110 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 9 | cofidvala.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 10 | 6, 2, 8, 9 | idfuval 17780 | . . 3 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| 11 | 1, 5, 10 | 3eqtr3d 2774 | . 2 ⊢ (𝜑 → 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))〉 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| 12 | 2 | fvexi 6836 | . . . 4 ⊢ 𝐵 ∈ V |
| 13 | resiexg 7842 | . . . 4 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐵) ∈ V |
| 15 | 12, 12 | xpex 7686 | . . . 4 ⊢ (𝐵 × 𝐵) ∈ V |
| 16 | 15 | mptex 7157 | . . 3 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))) ∈ V |
| 17 | 14, 16 | opth2 5420 | . 2 ⊢ (〈((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))〉 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉 ↔ (((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))))) |
| 18 | 11, 17 | sylib 218 | 1 ⊢ (𝜑 → (((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 ↦ cmpt 5172 I cid 5510 × cxp 5614 ↾ cres 5618 ∘ ccom 5620 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 Basecbs 17117 Hom chom 17169 Func cfunc 17758 idfunccidfu 17759 ∘func ccofu 17760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-func 17762 df-idfu 17763 df-cofu 17764 |
| This theorem is referenced by: cofidf1a 49149 |
| Copyright terms: Public domain | W3C validator |