Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofidvala Structured version   Visualization version   GIF version

Theorem cofidvala 49102
Description: The property "𝐹 is a section of 𝐺 " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025.)
Hypotheses
Ref Expression
cofidvala.i 𝐼 = (idfunc𝐷)
cofidvala.b 𝐵 = (Base‘𝐷)
cofidvala.f (𝜑𝐹 ∈ (𝐷 Func 𝐸))
cofidvala.g (𝜑𝐺 ∈ (𝐸 Func 𝐷))
cofidvala.o (𝜑 → (𝐺func 𝐹) = 𝐼)
cofidvala.h 𝐻 = (Hom ‘𝐷)
Assertion
Ref Expression
cofidvala (𝜑 → (((1st𝐺) ∘ (1st𝐹)) = ( I ↾ 𝐵) ∧ (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑧,𝐵   𝑧,𝐷   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑧,𝐻   𝜑,𝑥,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦,𝑧)   𝐹(𝑧)   𝐺(𝑧)   𝐻(𝑥,𝑦)   𝐼(𝑥,𝑦,𝑧)

Proof of Theorem cofidvala
StepHypRef Expression
1 cofidvala.o . . 3 (𝜑 → (𝐺func 𝐹) = 𝐼)
2 cofidvala.b . . . 4 𝐵 = (Base‘𝐷)
3 cofidvala.f . . . 4 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
4 cofidvala.g . . . 4 (𝜑𝐺 ∈ (𝐸 Func 𝐷))
52, 3, 4cofuval 17807 . . 3 (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
6 cofidvala.i . . . 4 𝐼 = (idfunc𝐷)
73func1st2nd 49062 . . . . 5 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
87funcrcl2 49065 . . . 4 (𝜑𝐷 ∈ Cat)
9 cofidvala.h . . . 4 𝐻 = (Hom ‘𝐷)
106, 2, 8, 9idfuval 17801 . . 3 (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
111, 5, 103eqtr3d 2772 . 2 (𝜑 → ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩ = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
122fvexi 6840 . . . 4 𝐵 ∈ V
13 resiexg 7852 . . . 4 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
1412, 13ax-mp 5 . . 3 ( I ↾ 𝐵) ∈ V
1512, 12xpex 7693 . . . 4 (𝐵 × 𝐵) ∈ V
1615mptex 7163 . . 3 (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧))) ∈ V
1714, 16opth2 5427 . 2 (⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩ = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩ ↔ (((1st𝐺) ∘ (1st𝐹)) = ( I ↾ 𝐵) ∧ (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))))
1811, 17sylib 218 1 (𝜑 → (((1st𝐺) ∘ (1st𝐹)) = ( I ↾ 𝐵) ∧ (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585  cmpt 5176   I cid 5517   × cxp 5621  cres 5625  ccom 5627  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  Basecbs 17138  Hom chom 17190   Func cfunc 17779  idfunccidfu 17780  func ccofu 17781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-func 17783  df-idfu 17784  df-cofu 17785
This theorem is referenced by:  cofidf1a  49104
  Copyright terms: Public domain W3C validator