| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofidvala | Structured version Visualization version GIF version | ||
| Description: The property "𝐹 is a section of 𝐺 " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofidvala.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| cofidvala.b | ⊢ 𝐵 = (Base‘𝐷) |
| cofidvala.f | ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| cofidvala.g | ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) |
| cofidvala.o | ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) |
| cofidvala.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| Ref | Expression |
|---|---|
| cofidvala | ⊢ (𝜑 → (((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidvala.o | . . 3 ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐼) | |
| 2 | cofidvala.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | cofidvala.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) | |
| 4 | cofidvala.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐸 Func 𝐷)) | |
| 5 | 2, 3, 4 | cofuval 17807 | . . 3 ⊢ (𝜑 → (𝐺 ∘func 𝐹) = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))〉) |
| 6 | cofidvala.i | . . . 4 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 7 | 3 | func1st2nd 49062 | . . . . 5 ⊢ (𝜑 → (1st ‘𝐹)(𝐷 Func 𝐸)(2nd ‘𝐹)) |
| 8 | 7 | funcrcl2 49065 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 9 | cofidvala.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 10 | 6, 2, 8, 9 | idfuval 17801 | . . 3 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| 11 | 1, 5, 10 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))〉 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| 12 | 2 | fvexi 6840 | . . . 4 ⊢ 𝐵 ∈ V |
| 13 | resiexg 7852 | . . . 4 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐵) ∈ V |
| 15 | 12, 12 | xpex 7693 | . . . 4 ⊢ (𝐵 × 𝐵) ∈ V |
| 16 | 15 | mptex 7163 | . . 3 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))) ∈ V |
| 17 | 14, 16 | opth2 5427 | . 2 ⊢ (〈((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))〉 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉 ↔ (((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))))) |
| 18 | 11, 17 | sylib 218 | 1 ⊢ (𝜑 → (((1st ‘𝐺) ∘ (1st ‘𝐹)) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 ↦ cmpt 5176 I cid 5517 × cxp 5621 ↾ cres 5625 ∘ ccom 5627 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1st c1st 7929 2nd c2nd 7930 Basecbs 17138 Hom chom 17190 Func cfunc 17779 idfunccidfu 17780 ∘func ccofu 17781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-ixp 8832 df-func 17783 df-idfu 17784 df-cofu 17785 |
| This theorem is referenced by: cofidf1a 49104 |
| Copyright terms: Public domain | W3C validator |