|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > conncompcld | Structured version Visualization version GIF version | ||
| Description: The connected component containing 𝐴 is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| conncomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | 
| Ref | Expression | 
|---|---|
| conncompcld | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | topontop 22920 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 2 | conncomp.2 | . . . . . . 7 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
| 3 | ssrab2 4079 | . . . . . . . 8 ⊢ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 | |
| 4 | sspwuni 5099 | . . . . . . . 8 ⊢ ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 ↔ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⊆ 𝑋) | |
| 5 | 3, 4 | mpbi 230 | . . . . . . 7 ⊢ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⊆ 𝑋 | 
| 6 | 2, 5 | eqsstri 4029 | . . . . . 6 ⊢ 𝑆 ⊆ 𝑋 | 
| 7 | toponuni 22921 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑋 = ∪ 𝐽) | 
| 9 | 6, 8 | sseqtrid 4025 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ⊆ ∪ 𝐽) | 
| 10 | eqid 2736 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 11 | 10 | clsss3 23068 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) | 
| 12 | 1, 9, 11 | syl2an2r 685 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) | 
| 13 | 12, 8 | sseqtrrd 4020 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) | 
| 14 | 10 | sscls 23065 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) | 
| 15 | 1, 9, 14 | syl2an2r 685 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) | 
| 16 | 2 | conncompid 23440 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) | 
| 17 | 15, 16 | sseldd 3983 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ((cls‘𝐽)‘𝑆)) | 
| 18 | simpl 482 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 19 | 6 | a1i 11 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ⊆ 𝑋) | 
| 20 | 2 | conncompconn 23441 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Conn) | 
| 21 | clsconn 23439 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Conn) → (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Conn) | |
| 22 | 18, 19, 20, 21 | syl3anc 1372 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Conn) | 
| 23 | 2 | conncompss 23442 | . . 3 ⊢ ((((cls‘𝐽)‘𝑆) ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆) ∧ (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Conn) → ((cls‘𝐽)‘𝑆) ⊆ 𝑆) | 
| 24 | 13, 17, 22, 23 | syl3anc 1372 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑆) | 
| 25 | 10 | iscld4 23074 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆)) | 
| 26 | 1, 9, 25 | syl2an2r 685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆)) | 
| 27 | 24, 26 | mpbird 257 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3435 ⊆ wss 3950 𝒫 cpw 4599 ∪ cuni 4906 ‘cfv 6560 (class class class)co 7432 ↾t crest 17466 Topctop 22900 TopOnctopon 22917 Clsdccld 23025 clsccl 23027 Conncconn 23420 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-en 8987 df-fin 8990 df-fi 9452 df-rest 17468 df-topgen 17489 df-top 22901 df-topon 22918 df-bases 22954 df-cld 23028 df-ntr 23029 df-cls 23030 df-conn 23421 | 
| This theorem is referenced by: conncompclo 23444 | 
| Copyright terms: Public domain | W3C validator |