MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompcld Structured version   Visualization version   GIF version

Theorem conncompcld 22044
Description: The connected component containing 𝐴 is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
conncompcld ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem conncompcld
StepHypRef Expression
1 topontop 21523 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 conncomp.2 . . . . . . 7 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
3 ssrab2 4058 . . . . . . . 8 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋
4 sspwuni 5024 . . . . . . . 8 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋)
53, 4mpbi 232 . . . . . . 7 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋
62, 5eqsstri 4003 . . . . . 6 𝑆𝑋
7 toponuni 21524 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
87adantr 483 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 = 𝐽)
96, 8sseqtrid 4021 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 𝐽)
10 eqid 2823 . . . . . 6 𝐽 = 𝐽
1110clsss3 21669 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
121, 9, 11syl2an2r 683 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
1312, 8sseqtrrd 4010 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
1410sscls 21666 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
151, 9, 14syl2an2r 683 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
162conncompid 22041 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑆)
1715, 16sseldd 3970 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
18 simpl 485 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
196a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆𝑋)
202conncompconn 22042 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝑆) ∈ Conn)
21 clsconn 22040 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Conn) → (𝐽t ((cls‘𝐽)‘𝑆)) ∈ Conn)
2218, 19, 20, 21syl3anc 1367 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t ((cls‘𝐽)‘𝑆)) ∈ Conn)
232conncompss 22043 . . 3 ((((cls‘𝐽)‘𝑆) ⊆ 𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆) ∧ (𝐽t ((cls‘𝐽)‘𝑆)) ∈ Conn) → ((cls‘𝐽)‘𝑆) ⊆ 𝑆)
2413, 17, 22, 23syl3anc 1367 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑆)
2510iscld4 21675 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆))
261, 9, 25syl2an2r 683 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆))
2724, 26mpbird 259 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {crab 3144  wss 3938  𝒫 cpw 4541   cuni 4840  cfv 6357  (class class class)co 7158  t crest 16696  Topctop 21503  TopOnctopon 21520  Clsdccld 21626  clsccl 21628  Conncconn 22021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108  df-er 8291  df-en 8512  df-fin 8515  df-fi 8877  df-rest 16698  df-topgen 16719  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-conn 22022
This theorem is referenced by:  conncompclo  22045
  Copyright terms: Public domain W3C validator