MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompcld Structured version   Visualization version   GIF version

Theorem conncompcld 22937
Description: The connected component containing 𝐴 is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = βˆͺ {π‘₯ ∈ 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ (𝐽 β†Ύt π‘₯) ∈ Conn)}
Assertion
Ref Expression
conncompcld ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ 𝑆 ∈ (Clsdβ€˜π½))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐽   π‘₯,𝑋
Allowed substitution hint:   𝑆(π‘₯)

Proof of Theorem conncompcld
StepHypRef Expression
1 topontop 22414 . . . . 5 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
2 conncomp.2 . . . . . . 7 𝑆 = βˆͺ {π‘₯ ∈ 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ (𝐽 β†Ύt π‘₯) ∈ Conn)}
3 ssrab2 4077 . . . . . . . 8 {π‘₯ ∈ 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ (𝐽 β†Ύt π‘₯) ∈ Conn)} βŠ† 𝒫 𝑋
4 sspwuni 5103 . . . . . . . 8 ({π‘₯ ∈ 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ (𝐽 β†Ύt π‘₯) ∈ Conn)} βŠ† 𝒫 𝑋 ↔ βˆͺ {π‘₯ ∈ 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ (𝐽 β†Ύt π‘₯) ∈ Conn)} βŠ† 𝑋)
53, 4mpbi 229 . . . . . . 7 βˆͺ {π‘₯ ∈ 𝒫 𝑋 ∣ (𝐴 ∈ π‘₯ ∧ (𝐽 β†Ύt π‘₯) ∈ Conn)} βŠ† 𝑋
62, 5eqsstri 4016 . . . . . 6 𝑆 βŠ† 𝑋
7 toponuni 22415 . . . . . . 7 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
87adantr 481 . . . . . 6 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ 𝑋 = βˆͺ 𝐽)
96, 8sseqtrid 4034 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ 𝑆 βŠ† βˆͺ 𝐽)
10 eqid 2732 . . . . . 6 βˆͺ 𝐽 = βˆͺ 𝐽
1110clsss3 22562 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 βŠ† βˆͺ 𝐽) β†’ ((clsβ€˜π½)β€˜π‘†) βŠ† βˆͺ 𝐽)
121, 9, 11syl2an2r 683 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ ((clsβ€˜π½)β€˜π‘†) βŠ† βˆͺ 𝐽)
1312, 8sseqtrrd 4023 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ ((clsβ€˜π½)β€˜π‘†) βŠ† 𝑋)
1410sscls 22559 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 βŠ† βˆͺ 𝐽) β†’ 𝑆 βŠ† ((clsβ€˜π½)β€˜π‘†))
151, 9, 14syl2an2r 683 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ 𝑆 βŠ† ((clsβ€˜π½)β€˜π‘†))
162conncompid 22934 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ 𝐴 ∈ 𝑆)
1715, 16sseldd 3983 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†))
18 simpl 483 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
196a1i 11 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ 𝑆 βŠ† 𝑋)
202conncompconn 22935 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ (𝐽 β†Ύt 𝑆) ∈ Conn)
21 clsconn 22933 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ (𝐽 β†Ύt 𝑆) ∈ Conn) β†’ (𝐽 β†Ύt ((clsβ€˜π½)β€˜π‘†)) ∈ Conn)
2218, 19, 20, 21syl3anc 1371 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ (𝐽 β†Ύt ((clsβ€˜π½)β€˜π‘†)) ∈ Conn)
232conncompss 22936 . . 3 ((((clsβ€˜π½)β€˜π‘†) βŠ† 𝑋 ∧ 𝐴 ∈ ((clsβ€˜π½)β€˜π‘†) ∧ (𝐽 β†Ύt ((clsβ€˜π½)β€˜π‘†)) ∈ Conn) β†’ ((clsβ€˜π½)β€˜π‘†) βŠ† 𝑆)
2413, 17, 22, 23syl3anc 1371 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ ((clsβ€˜π½)β€˜π‘†) βŠ† 𝑆)
2510iscld4 22568 . . 3 ((𝐽 ∈ Top ∧ 𝑆 βŠ† βˆͺ 𝐽) β†’ (𝑆 ∈ (Clsdβ€˜π½) ↔ ((clsβ€˜π½)β€˜π‘†) βŠ† 𝑆))
261, 9, 25syl2an2r 683 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ (𝑆 ∈ (Clsdβ€˜π½) ↔ ((clsβ€˜π½)β€˜π‘†) βŠ† 𝑆))
2724, 26mpbird 256 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋) β†’ 𝑆 ∈ (Clsdβ€˜π½))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908  β€˜cfv 6543  (class class class)co 7408   β†Ύt crest 17365  Topctop 22394  TopOnctopon 22411  Clsdccld 22519  clsccl 22521  Conncconn 22914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-en 8939  df-fin 8942  df-fi 9405  df-rest 17367  df-topgen 17388  df-top 22395  df-topon 22412  df-bases 22448  df-cld 22522  df-ntr 22523  df-cls 22524  df-conn 22915
This theorem is referenced by:  conncompclo  22938
  Copyright terms: Public domain W3C validator