![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > conncompcld | Structured version Visualization version GIF version |
Description: The connected component containing 𝐴 is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
conncomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
Ref | Expression |
---|---|
conncompcld | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 21089 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
2 | 1 | adantr 474 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ Top) |
3 | conncomp.2 | . . . . . . 7 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
4 | ssrab2 3913 | . . . . . . . 8 ⊢ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 | |
5 | sspwuni 4833 | . . . . . . . 8 ⊢ ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 ↔ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⊆ 𝑋) | |
6 | 4, 5 | mpbi 222 | . . . . . . 7 ⊢ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⊆ 𝑋 |
7 | 3, 6 | eqsstri 3861 | . . . . . 6 ⊢ 𝑆 ⊆ 𝑋 |
8 | toponuni 21090 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
9 | 8 | adantr 474 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑋 = ∪ 𝐽) |
10 | 7, 9 | syl5sseq 3879 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ⊆ ∪ 𝐽) |
11 | eqid 2826 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
12 | 11 | clsss3 21235 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
13 | 2, 10, 12 | syl2anc 581 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
14 | 13, 9 | sseqtr4d 3868 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
15 | 11 | sscls 21232 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
16 | 2, 10, 15 | syl2anc 581 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
17 | 3 | conncompid 21606 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
18 | 16, 17 | sseldd 3829 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ((cls‘𝐽)‘𝑆)) |
19 | simpl 476 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
20 | 7 | a1i 11 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ⊆ 𝑋) |
21 | 3 | conncompconn 21607 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Conn) |
22 | clsconn 21605 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Conn) → (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Conn) | |
23 | 19, 20, 21, 22 | syl3anc 1496 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Conn) |
24 | 3 | conncompss 21608 | . . 3 ⊢ ((((cls‘𝐽)‘𝑆) ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆) ∧ (𝐽 ↾t ((cls‘𝐽)‘𝑆)) ∈ Conn) → ((cls‘𝐽)‘𝑆) ⊆ 𝑆) |
25 | 14, 18, 23, 24 | syl3anc 1496 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑆) |
26 | 11 | iscld4 21241 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆)) |
27 | 2, 10, 26 | syl2anc 581 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆)) |
28 | 25, 27 | mpbird 249 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 {crab 3122 ⊆ wss 3799 𝒫 cpw 4379 ∪ cuni 4659 ‘cfv 6124 (class class class)co 6906 ↾t crest 16435 Topctop 21069 TopOnctopon 21086 Clsdccld 21192 clsccl 21194 Conncconn 21586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-iin 4744 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-oadd 7831 df-er 8010 df-en 8224 df-fin 8227 df-fi 8587 df-rest 16437 df-topgen 16458 df-top 21070 df-topon 21087 df-bases 21122 df-cld 21195 df-ntr 21196 df-cls 21197 df-conn 21587 |
This theorem is referenced by: conncompclo 21610 |
Copyright terms: Public domain | W3C validator |