MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompcld Structured version   Visualization version   GIF version

Theorem conncompcld 22039
Description: The connected component containing 𝐴 is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
conncompcld ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem conncompcld
StepHypRef Expression
1 topontop 21518 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 conncomp.2 . . . . . . 7 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
3 ssrab2 4007 . . . . . . . 8 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋
4 sspwuni 4985 . . . . . . . 8 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝒫 𝑋 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋)
53, 4mpbi 233 . . . . . . 7 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ⊆ 𝑋
62, 5eqsstri 3949 . . . . . 6 𝑆𝑋
7 toponuni 21519 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
87adantr 484 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 = 𝐽)
96, 8sseqtrid 3967 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 𝐽)
10 eqid 2798 . . . . . 6 𝐽 = 𝐽
1110clsss3 21664 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
121, 9, 11syl2an2r 684 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
1312, 8sseqtrrd 3956 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
1410sscls 21661 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
151, 9, 14syl2an2r 684 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
162conncompid 22036 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑆)
1715, 16sseldd 3916 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
18 simpl 486 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
196a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆𝑋)
202conncompconn 22037 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝑆) ∈ Conn)
21 clsconn 22035 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Conn) → (𝐽t ((cls‘𝐽)‘𝑆)) ∈ Conn)
2218, 19, 20, 21syl3anc 1368 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t ((cls‘𝐽)‘𝑆)) ∈ Conn)
232conncompss 22038 . . 3 ((((cls‘𝐽)‘𝑆) ⊆ 𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆) ∧ (𝐽t ((cls‘𝐽)‘𝑆)) ∈ Conn) → ((cls‘𝐽)‘𝑆) ⊆ 𝑆)
2413, 17, 22, 23syl3anc 1368 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑆)
2510iscld4 21670 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆))
261, 9, 25syl2an2r 684 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆))
2724, 26mpbird 260 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑆 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {crab 3110  wss 3881  𝒫 cpw 4497   cuni 4800  cfv 6324  (class class class)co 7135  t crest 16686  Topctop 21498  TopOnctopon 21515  Clsdccld 21621  clsccl 21623  Conncconn 22016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089  df-er 8272  df-en 8493  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-conn 22017
This theorem is referenced by:  conncompclo  22040
  Copyright terms: Public domain W3C validator