| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl22 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl22 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl2 1187 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: brbtwn2 28868 ax5seg 28901 axpasch 28904 axeuclid 28926 br8d 32571 br8 35728 cgrextend 35981 segconeq 35983 trisegint 36001 ifscgr 36017 cgrsub 36018 cgrxfr 36028 lineext 36049 seglecgr12im 36083 segletr 36087 lineunray 36120 lineelsb2 36121 cvrcmp 39261 cvlatexch3 39316 cvlsupr2 39321 atcvrj2b 39411 atexchcvrN 39419 3dim1 39446 3dim2 39447 3atlem3 39464 3atlem5 39466 lplnnle2at 39520 2llnjaN 39545 4atlem3 39575 4atlem10b 39584 4atlem12 39591 2llnma3r 39767 paddasslem4 39802 paddasslem7 39805 paddasslem8 39806 paddasslem12 39810 paddasslem13 39811 paddasslem15 39813 pmodlem1 39825 pmodlem2 39826 atmod1i1m 39837 llnexchb2lem 39847 4atex2 40056 ltrnatlw 40162 trlval4 40167 arglem1N 40169 cdlemd4 40180 cdlemd5 40181 cdleme0moN 40204 cdleme16 40264 cdleme20 40303 cdleme21k 40317 cdleme27N 40348 cdleme28c 40351 cdleme43fsv1snlem 40399 cdleme38n 40443 cdleme40n 40447 cdleme41snaw 40455 cdlemg6c 40599 cdlemg8c 40608 cdlemg8 40610 cdlemg12e 40626 cdlemg16 40636 cdlemg16ALTN 40637 cdlemg16z 40638 cdlemg16zz 40639 cdlemg18a 40657 cdlemg20 40664 cdlemg22 40666 cdlemg37 40668 cdlemg31d 40679 cdlemg33 40690 cdlemg38 40694 cdlemg44b 40711 cdlemk38 40894 cdlemk35s-id 40917 cdlemk39s-id 40919 cdlemk53b 40935 cdlemk55 40940 cdlemk35u 40943 cdlemk55u 40945 cdlemn11pre 41189 |
| Copyright terms: Public domain | W3C validator |