| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl22 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl22 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl2 1187 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: brbtwn2 28894 ax5seg 28927 axpasch 28930 axeuclid 28952 br8d 32602 br8 35811 cgrextend 36063 segconeq 36065 trisegint 36083 ifscgr 36099 cgrsub 36100 cgrxfr 36110 lineext 36131 seglecgr12im 36165 segletr 36169 lineunray 36202 lineelsb2 36203 cvrcmp 39392 cvlatexch3 39447 cvlsupr2 39452 atcvrj2b 39541 atexchcvrN 39549 3dim1 39576 3dim2 39577 3atlem3 39594 3atlem5 39596 lplnnle2at 39650 2llnjaN 39675 4atlem3 39705 4atlem10b 39714 4atlem12 39721 2llnma3r 39897 paddasslem4 39932 paddasslem7 39935 paddasslem8 39936 paddasslem12 39940 paddasslem13 39941 paddasslem15 39943 pmodlem1 39955 pmodlem2 39956 atmod1i1m 39967 llnexchb2lem 39977 4atex2 40186 ltrnatlw 40292 trlval4 40297 arglem1N 40299 cdlemd4 40310 cdlemd5 40311 cdleme0moN 40334 cdleme16 40394 cdleme20 40433 cdleme21k 40447 cdleme27N 40478 cdleme28c 40481 cdleme43fsv1snlem 40529 cdleme38n 40573 cdleme40n 40577 cdleme41snaw 40585 cdlemg6c 40729 cdlemg8c 40738 cdlemg8 40740 cdlemg12e 40756 cdlemg16 40766 cdlemg16ALTN 40767 cdlemg16z 40768 cdlemg16zz 40769 cdlemg18a 40787 cdlemg20 40794 cdlemg22 40796 cdlemg37 40798 cdlemg31d 40809 cdlemg33 40820 cdlemg38 40824 cdlemg44b 40841 cdlemk38 41024 cdlemk35s-id 41047 cdlemk39s-id 41049 cdlemk53b 41065 cdlemk55 41070 cdlemk35u 41073 cdlemk55u 41075 cdlemn11pre 41319 |
| Copyright terms: Public domain | W3C validator |