Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl22 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl22 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl2 1188 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: brbtwn2 26996 ax5seg 27029 axpasch 27032 axeuclid 27054 br8d 30669 br8 33442 cgrextend 34047 segconeq 34049 trisegint 34067 ifscgr 34083 cgrsub 34084 cgrxfr 34094 lineext 34115 seglecgr12im 34149 segletr 34153 lineunray 34186 lineelsb2 34187 cvrcmp 37034 cvlatexch3 37089 cvlsupr2 37094 atcvrj2b 37183 atexchcvrN 37191 3dim1 37218 3dim2 37219 3atlem3 37236 3atlem5 37238 lplnnle2at 37292 2llnjaN 37317 4atlem3 37347 4atlem10b 37356 4atlem12 37363 2llnma3r 37539 paddasslem4 37574 paddasslem7 37577 paddasslem8 37578 paddasslem12 37582 paddasslem13 37583 paddasslem15 37585 pmodlem1 37597 pmodlem2 37598 atmod1i1m 37609 llnexchb2lem 37619 4atex2 37828 ltrnatlw 37934 trlval4 37939 arglem1N 37941 cdlemd4 37952 cdlemd5 37953 cdleme0moN 37976 cdleme16 38036 cdleme20 38075 cdleme21k 38089 cdleme27N 38120 cdleme28c 38123 cdleme43fsv1snlem 38171 cdleme38n 38215 cdleme40n 38219 cdleme41snaw 38227 cdlemg6c 38371 cdlemg8c 38380 cdlemg8 38382 cdlemg12e 38398 cdlemg16 38408 cdlemg16ALTN 38409 cdlemg16z 38410 cdlemg16zz 38411 cdlemg18a 38429 cdlemg20 38436 cdlemg22 38438 cdlemg37 38440 cdlemg31d 38451 cdlemg33 38462 cdlemg38 38466 cdlemg44b 38483 cdlemk38 38666 cdlemk35s-id 38689 cdlemk39s-id 38691 cdlemk53b 38707 cdlemk55 38712 cdlemk35u 38715 cdlemk55u 38717 cdlemn11pre 38961 |
Copyright terms: Public domain | W3C validator |