![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl22 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl22 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl2 1186 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: brbtwn2 28418 ax5seg 28451 axpasch 28454 axeuclid 28476 br8d 32094 br8 35018 cgrextend 35272 segconeq 35274 trisegint 35292 ifscgr 35308 cgrsub 35309 cgrxfr 35319 lineext 35340 seglecgr12im 35374 segletr 35378 lineunray 35411 lineelsb2 35412 cvrcmp 38456 cvlatexch3 38511 cvlsupr2 38516 atcvrj2b 38606 atexchcvrN 38614 3dim1 38641 3dim2 38642 3atlem3 38659 3atlem5 38661 lplnnle2at 38715 2llnjaN 38740 4atlem3 38770 4atlem10b 38779 4atlem12 38786 2llnma3r 38962 paddasslem4 38997 paddasslem7 39000 paddasslem8 39001 paddasslem12 39005 paddasslem13 39006 paddasslem15 39008 pmodlem1 39020 pmodlem2 39021 atmod1i1m 39032 llnexchb2lem 39042 4atex2 39251 ltrnatlw 39357 trlval4 39362 arglem1N 39364 cdlemd4 39375 cdlemd5 39376 cdleme0moN 39399 cdleme16 39459 cdleme20 39498 cdleme21k 39512 cdleme27N 39543 cdleme28c 39546 cdleme43fsv1snlem 39594 cdleme38n 39638 cdleme40n 39642 cdleme41snaw 39650 cdlemg6c 39794 cdlemg8c 39803 cdlemg8 39805 cdlemg12e 39821 cdlemg16 39831 cdlemg16ALTN 39832 cdlemg16z 39833 cdlemg16zz 39834 cdlemg18a 39852 cdlemg20 39859 cdlemg22 39861 cdlemg37 39863 cdlemg31d 39874 cdlemg33 39885 cdlemg38 39889 cdlemg44b 39906 cdlemk38 40089 cdlemk35s-id 40112 cdlemk39s-id 40114 cdlemk53b 40130 cdlemk55 40135 cdlemk35u 40138 cdlemk55u 40140 cdlemn11pre 40384 |
Copyright terms: Public domain | W3C validator |