| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl22 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl22 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl2 1187 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: brbtwn2 28876 ax5seg 28909 axpasch 28912 axeuclid 28934 br8d 32581 br8 35768 cgrextend 36021 segconeq 36023 trisegint 36041 ifscgr 36057 cgrsub 36058 cgrxfr 36068 lineext 36089 seglecgr12im 36123 segletr 36127 lineunray 36160 lineelsb2 36161 cvrcmp 39301 cvlatexch3 39356 cvlsupr2 39361 atcvrj2b 39450 atexchcvrN 39458 3dim1 39485 3dim2 39486 3atlem3 39503 3atlem5 39505 lplnnle2at 39559 2llnjaN 39584 4atlem3 39614 4atlem10b 39623 4atlem12 39630 2llnma3r 39806 paddasslem4 39841 paddasslem7 39844 paddasslem8 39845 paddasslem12 39849 paddasslem13 39850 paddasslem15 39852 pmodlem1 39864 pmodlem2 39865 atmod1i1m 39876 llnexchb2lem 39886 4atex2 40095 ltrnatlw 40201 trlval4 40206 arglem1N 40208 cdlemd4 40219 cdlemd5 40220 cdleme0moN 40243 cdleme16 40303 cdleme20 40342 cdleme21k 40356 cdleme27N 40387 cdleme28c 40390 cdleme43fsv1snlem 40438 cdleme38n 40482 cdleme40n 40486 cdleme41snaw 40494 cdlemg6c 40638 cdlemg8c 40647 cdlemg8 40649 cdlemg12e 40665 cdlemg16 40675 cdlemg16ALTN 40676 cdlemg16z 40677 cdlemg16zz 40678 cdlemg18a 40696 cdlemg20 40703 cdlemg22 40705 cdlemg37 40707 cdlemg31d 40718 cdlemg33 40729 cdlemg38 40733 cdlemg44b 40750 cdlemk38 40933 cdlemk35s-id 40956 cdlemk39s-id 40958 cdlemk53b 40974 cdlemk55 40979 cdlemk35u 40982 cdlemk55u 40984 cdlemn11pre 41228 |
| Copyright terms: Public domain | W3C validator |