![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl22 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl22 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1185 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl2 1179 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 df-3an 1082 |
This theorem is referenced by: brbtwn2 26378 ax5seg 26411 axpasch 26414 axeuclid 26436 br8d 30047 br8 32602 cgrextend 33080 segconeq 33082 trisegint 33100 ifscgr 33116 cgrsub 33117 cgrxfr 33127 lineext 33148 seglecgr12im 33182 segletr 33186 lineunray 33219 lineelsb2 33220 cvrcmp 35971 cvlatexch3 36026 cvlsupr2 36031 atcvrj2b 36120 atexchcvrN 36128 3dim1 36155 3dim2 36156 3atlem3 36173 3atlem5 36175 lplnnle2at 36229 2llnjaN 36254 4atlem3 36284 4atlem10b 36293 4atlem12 36300 2llnma3r 36476 paddasslem4 36511 paddasslem7 36514 paddasslem8 36515 paddasslem12 36519 paddasslem13 36520 paddasslem15 36522 pmodlem1 36534 pmodlem2 36535 atmod1i1m 36546 llnexchb2lem 36556 4atex2 36765 ltrnatlw 36871 trlval4 36876 arglem1N 36878 cdlemd4 36889 cdlemd5 36890 cdleme0moN 36913 cdleme16 36973 cdleme20 37012 cdleme21k 37026 cdleme27N 37057 cdleme28c 37060 cdleme43fsv1snlem 37108 cdleme38n 37152 cdleme40n 37156 cdleme41snaw 37164 cdlemg6c 37308 cdlemg8c 37317 cdlemg8 37319 cdlemg12e 37335 cdlemg16 37345 cdlemg16ALTN 37346 cdlemg16z 37347 cdlemg16zz 37348 cdlemg18a 37366 cdlemg20 37373 cdlemg22 37375 cdlemg37 37377 cdlemg31d 37388 cdlemg33 37399 cdlemg38 37403 cdlemg44b 37420 cdlemk38 37603 cdlemk35s-id 37626 cdlemk39s-id 37628 cdlemk53b 37644 cdlemk55 37649 cdlemk35u 37652 cdlemk55u 37654 cdlemn11pre 37898 |
Copyright terms: Public domain | W3C validator |