| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl22 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl22 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl2 1187 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: brbtwn2 28839 ax5seg 28872 axpasch 28875 axeuclid 28897 br8d 32545 br8 35750 cgrextend 36003 segconeq 36005 trisegint 36023 ifscgr 36039 cgrsub 36040 cgrxfr 36050 lineext 36071 seglecgr12im 36105 segletr 36109 lineunray 36142 lineelsb2 36143 cvrcmp 39283 cvlatexch3 39338 cvlsupr2 39343 atcvrj2b 39433 atexchcvrN 39441 3dim1 39468 3dim2 39469 3atlem3 39486 3atlem5 39488 lplnnle2at 39542 2llnjaN 39567 4atlem3 39597 4atlem10b 39606 4atlem12 39613 2llnma3r 39789 paddasslem4 39824 paddasslem7 39827 paddasslem8 39828 paddasslem12 39832 paddasslem13 39833 paddasslem15 39835 pmodlem1 39847 pmodlem2 39848 atmod1i1m 39859 llnexchb2lem 39869 4atex2 40078 ltrnatlw 40184 trlval4 40189 arglem1N 40191 cdlemd4 40202 cdlemd5 40203 cdleme0moN 40226 cdleme16 40286 cdleme20 40325 cdleme21k 40339 cdleme27N 40370 cdleme28c 40373 cdleme43fsv1snlem 40421 cdleme38n 40465 cdleme40n 40469 cdleme41snaw 40477 cdlemg6c 40621 cdlemg8c 40630 cdlemg8 40632 cdlemg12e 40648 cdlemg16 40658 cdlemg16ALTN 40659 cdlemg16z 40660 cdlemg16zz 40661 cdlemg18a 40679 cdlemg20 40686 cdlemg22 40688 cdlemg37 40690 cdlemg31d 40701 cdlemg33 40712 cdlemg38 40716 cdlemg44b 40733 cdlemk38 40916 cdlemk35s-id 40939 cdlemk39s-id 40941 cdlemk53b 40957 cdlemk55 40962 cdlemk35u 40965 cdlemk55u 40967 cdlemn11pre 41211 |
| Copyright terms: Public domain | W3C validator |