MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatval0 Structured version   Visualization version   GIF version

Theorem decpmatval0 22651
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, most general version. (Contributed by AV, 2-Dec-2019.)
Assertion
Ref Expression
decpmatval0 ((𝑀𝑉𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
Distinct variable groups:   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem decpmatval0
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-decpmat 22650 . . 3 decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))
21a1i 11 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))))
3 dmeq 5867 . . . . . 6 (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀)
43adantr 480 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾) → dom 𝑚 = dom 𝑀)
54dmeqd 5869 . . . 4 ((𝑚 = 𝑀𝑘 = 𝐾) → dom dom 𝑚 = dom dom 𝑀)
6 oveq 7393 . . . . . . 7 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
76fveq2d 6862 . . . . . 6 (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
87adantr 480 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
9 simpr 484 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾) → 𝑘 = 𝐾)
108, 9fveq12d 6865 . . . 4 ((𝑚 = 𝑀𝑘 = 𝐾) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝐾))
115, 5, 10mpoeq123dv 7464 . . 3 ((𝑚 = 𝑀𝑘 = 𝐾) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
1211adantl 481 . 2 (((𝑀𝑉𝐾 ∈ ℕ0) ∧ (𝑚 = 𝑀𝑘 = 𝐾)) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
13 elex 3468 . . 3 (𝑀𝑉𝑀 ∈ V)
1413adantr 480 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → 𝑀 ∈ V)
15 simpr 484 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
16 dmexg 7877 . . . . . 6 (𝑀𝑉 → dom 𝑀 ∈ V)
1716dmexd 7879 . . . . 5 (𝑀𝑉 → dom dom 𝑀 ∈ V)
1817, 17jca 511 . . . 4 (𝑀𝑉 → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V))
1918adantr 480 . . 3 ((𝑀𝑉𝐾 ∈ ℕ0) → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V))
20 mpoexga 8056 . . 3 ((dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V)
2119, 20syl 17 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V)
222, 12, 14, 15, 21ovmpod 7541 1 ((𝑀𝑉𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  dom cdm 5638  cfv 6511  (class class class)co 7387  cmpo 7389  0cn0 12442  coe1cco1 22062   decompPMat cdecpmat 22649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-decpmat 22650
This theorem is referenced by:  decpmatval  22652
  Copyright terms: Public domain W3C validator