![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decpmatval0 | Structured version Visualization version GIF version |
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, most general version. (Contributed by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
decpmatval0 | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-decpmat 22790 | . . 3 ⊢ decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))) |
3 | dmeq 5928 | . . . . . 6 ⊢ (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → dom 𝑚 = dom 𝑀) |
5 | 4 | dmeqd 5930 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → dom dom 𝑚 = dom dom 𝑀) |
6 | oveq 7454 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
7 | 6 | fveq2d 6924 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
9 | simpr 484 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾) | |
10 | 8, 9 | fveq12d 6927 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝐾)) |
11 | 5, 5, 10 | mpoeq123dv 7525 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
12 | 11 | adantl 481 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑘 = 𝐾)) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
13 | elex 3509 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
14 | 13 | adantr 480 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ V) |
15 | simpr 484 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
16 | dmexg 7941 | . . . . . 6 ⊢ (𝑀 ∈ 𝑉 → dom 𝑀 ∈ V) | |
17 | 16 | dmexd 7943 | . . . . 5 ⊢ (𝑀 ∈ 𝑉 → dom dom 𝑀 ∈ V) |
18 | 17, 17 | jca 511 | . . . 4 ⊢ (𝑀 ∈ 𝑉 → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V)) |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V)) |
20 | mpoexga 8118 | . . 3 ⊢ ((dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V) | |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V) |
22 | 2, 12, 14, 15, 21 | ovmpod 7602 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ℕ0cn0 12553 coe1cco1 22200 decompPMat cdecpmat 22789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-decpmat 22790 |
This theorem is referenced by: decpmatval 22792 |
Copyright terms: Public domain | W3C validator |