MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatval0 Structured version   Visualization version   GIF version

Theorem decpmatval0 22679
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, most general version. (Contributed by AV, 2-Dec-2019.)
Assertion
Ref Expression
decpmatval0 ((𝑀𝑉𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
Distinct variable groups:   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem decpmatval0
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-decpmat 22678 . . 3 decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))
21a1i 11 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))))
3 dmeq 5842 . . . . . 6 (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀)
43adantr 480 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾) → dom 𝑚 = dom 𝑀)
54dmeqd 5844 . . . 4 ((𝑚 = 𝑀𝑘 = 𝐾) → dom dom 𝑚 = dom dom 𝑀)
6 oveq 7352 . . . . . . 7 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
76fveq2d 6826 . . . . . 6 (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
87adantr 480 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
9 simpr 484 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾) → 𝑘 = 𝐾)
108, 9fveq12d 6829 . . . 4 ((𝑚 = 𝑀𝑘 = 𝐾) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝐾))
115, 5, 10mpoeq123dv 7421 . . 3 ((𝑚 = 𝑀𝑘 = 𝐾) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
1211adantl 481 . 2 (((𝑀𝑉𝐾 ∈ ℕ0) ∧ (𝑚 = 𝑀𝑘 = 𝐾)) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
13 elex 3457 . . 3 (𝑀𝑉𝑀 ∈ V)
1413adantr 480 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → 𝑀 ∈ V)
15 simpr 484 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
16 dmexg 7831 . . . . . 6 (𝑀𝑉 → dom 𝑀 ∈ V)
1716dmexd 7833 . . . . 5 (𝑀𝑉 → dom dom 𝑀 ∈ V)
1817, 17jca 511 . . . 4 (𝑀𝑉 → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V))
1918adantr 480 . . 3 ((𝑀𝑉𝐾 ∈ ℕ0) → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V))
20 mpoexga 8009 . . 3 ((dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V)
2119, 20syl 17 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V)
222, 12, 14, 15, 21ovmpod 7498 1 ((𝑀𝑉𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  dom cdm 5614  cfv 6481  (class class class)co 7346  cmpo 7348  0cn0 12381  coe1cco1 22090   decompPMat cdecpmat 22677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-decpmat 22678
This theorem is referenced by:  decpmatval  22680
  Copyright terms: Public domain W3C validator