MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatval0 Structured version   Visualization version   GIF version

Theorem decpmatval0 22257
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, most general version. (Contributed by AV, 2-Dec-2019.)
Assertion
Ref Expression
decpmatval0 ((𝑀𝑉𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
Distinct variable groups:   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem decpmatval0
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-decpmat 22256 . . 3 decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))
21a1i 11 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))))
3 dmeq 5901 . . . . . 6 (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀)
43adantr 481 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾) → dom 𝑚 = dom 𝑀)
54dmeqd 5903 . . . 4 ((𝑚 = 𝑀𝑘 = 𝐾) → dom dom 𝑚 = dom dom 𝑀)
6 oveq 7411 . . . . . . 7 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
76fveq2d 6892 . . . . . 6 (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
87adantr 481 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
9 simpr 485 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾) → 𝑘 = 𝐾)
108, 9fveq12d 6895 . . . 4 ((𝑚 = 𝑀𝑘 = 𝐾) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝐾))
115, 5, 10mpoeq123dv 7480 . . 3 ((𝑚 = 𝑀𝑘 = 𝐾) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
1211adantl 482 . 2 (((𝑀𝑉𝐾 ∈ ℕ0) ∧ (𝑚 = 𝑀𝑘 = 𝐾)) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
13 elex 3492 . . 3 (𝑀𝑉𝑀 ∈ V)
1413adantr 481 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → 𝑀 ∈ V)
15 simpr 485 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
16 dmexg 7890 . . . . . 6 (𝑀𝑉 → dom 𝑀 ∈ V)
1716dmexd 7892 . . . . 5 (𝑀𝑉 → dom dom 𝑀 ∈ V)
1817, 17jca 512 . . . 4 (𝑀𝑉 → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V))
1918adantr 481 . . 3 ((𝑀𝑉𝐾 ∈ ℕ0) → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V))
20 mpoexga 8060 . . 3 ((dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V)
2119, 20syl 17 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V)
222, 12, 14, 15, 21ovmpod 7556 1 ((𝑀𝑉𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  dom cdm 5675  cfv 6540  (class class class)co 7405  cmpo 7407  0cn0 12468  coe1cco1 21693   decompPMat cdecpmat 22255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-decpmat 22256
This theorem is referenced by:  decpmatval  22258
  Copyright terms: Public domain W3C validator