Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decpmatval0 | Structured version Visualization version GIF version |
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, most general version. (Contributed by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
decpmatval0 | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-decpmat 21820 | . . 3 ⊢ decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))) |
3 | dmeq 5801 | . . . . . 6 ⊢ (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → dom 𝑚 = dom 𝑀) |
5 | 4 | dmeqd 5803 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → dom dom 𝑚 = dom dom 𝑀) |
6 | oveq 7261 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
7 | 6 | fveq2d 6760 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
9 | simpr 484 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾) | |
10 | 8, 9 | fveq12d 6763 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝐾)) |
11 | 5, 5, 10 | mpoeq123dv 7328 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
12 | 11 | adantl 481 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑘 = 𝐾)) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
13 | elex 3440 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
14 | 13 | adantr 480 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ V) |
15 | simpr 484 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
16 | dmexg 7724 | . . . . . 6 ⊢ (𝑀 ∈ 𝑉 → dom 𝑀 ∈ V) | |
17 | 16 | dmexd 7726 | . . . . 5 ⊢ (𝑀 ∈ 𝑉 → dom dom 𝑀 ∈ V) |
18 | 17, 17 | jca 511 | . . . 4 ⊢ (𝑀 ∈ 𝑉 → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V)) |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V)) |
20 | mpoexga 7891 | . . 3 ⊢ ((dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V) | |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V) |
22 | 2, 12, 14, 15, 21 | ovmpod 7403 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ℕ0cn0 12163 coe1cco1 21259 decompPMat cdecpmat 21819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-decpmat 21820 |
This theorem is referenced by: decpmatval 21822 |
Copyright terms: Public domain | W3C validator |