| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decpmatval0 | Structured version Visualization version GIF version | ||
| Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, most general version. (Contributed by AV, 2-Dec-2019.) |
| Ref | Expression |
|---|---|
| decpmatval0 | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-decpmat 22678 | . . 3 ⊢ decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))) |
| 3 | dmeq 5842 | . . . . . 6 ⊢ (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → dom 𝑚 = dom 𝑀) |
| 5 | 4 | dmeqd 5844 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → dom dom 𝑚 = dom dom 𝑀) |
| 6 | oveq 7352 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
| 7 | 6 | fveq2d 6826 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾) | |
| 10 | 8, 9 | fveq12d 6829 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝐾)) |
| 11 | 5, 5, 10 | mpoeq123dv 7421 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
| 12 | 11 | adantl 481 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑘 = 𝐾)) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
| 13 | elex 3457 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
| 14 | 13 | adantr 480 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ V) |
| 15 | simpr 484 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
| 16 | dmexg 7831 | . . . . . 6 ⊢ (𝑀 ∈ 𝑉 → dom 𝑀 ∈ V) | |
| 17 | 16 | dmexd 7833 | . . . . 5 ⊢ (𝑀 ∈ 𝑉 → dom dom 𝑀 ∈ V) |
| 18 | 17, 17 | jca 511 | . . . 4 ⊢ (𝑀 ∈ 𝑉 → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V)) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V)) |
| 20 | mpoexga 8009 | . . 3 ⊢ ((dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V) | |
| 21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V) |
| 22 | 2, 12, 14, 15, 21 | ovmpod 7498 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ℕ0cn0 12381 coe1cco1 22090 decompPMat cdecpmat 22677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-decpmat 22678 |
| This theorem is referenced by: decpmatval 22680 |
| Copyright terms: Public domain | W3C validator |