Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatval0 Structured version   Visualization version   GIF version

Theorem decpmatval0 21358
 Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, most general version. (Contributed by AV, 2-Dec-2019.)
Assertion
Ref Expression
decpmatval0 ((𝑀𝑉𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
Distinct variable groups:   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem decpmatval0
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-decpmat 21357 . . 3 decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))
21a1i 11 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))))
3 dmeq 5753 . . . . . 6 (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀)
43adantr 484 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾) → dom 𝑚 = dom 𝑀)
54dmeqd 5755 . . . 4 ((𝑚 = 𝑀𝑘 = 𝐾) → dom dom 𝑚 = dom dom 𝑀)
6 oveq 7144 . . . . . . 7 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
76fveq2d 6655 . . . . . 6 (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
87adantr 484 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗)))
9 simpr 488 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾) → 𝑘 = 𝐾)
108, 9fveq12d 6658 . . . 4 ((𝑚 = 𝑀𝑘 = 𝐾) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝐾))
115, 5, 10mpoeq123dv 7211 . . 3 ((𝑚 = 𝑀𝑘 = 𝐾) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
1211adantl 485 . 2 (((𝑀𝑉𝐾 ∈ ℕ0) ∧ (𝑚 = 𝑀𝑘 = 𝐾)) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
13 elex 3497 . . 3 (𝑀𝑉𝑀 ∈ V)
1413adantr 484 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → 𝑀 ∈ V)
15 simpr 488 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0)
16 dmexg 7596 . . . . . 6 (𝑀𝑉 → dom 𝑀 ∈ V)
1716dmexd 7598 . . . . 5 (𝑀𝑉 → dom dom 𝑀 ∈ V)
1817, 17jca 515 . . . 4 (𝑀𝑉 → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V))
1918adantr 484 . . 3 ((𝑀𝑉𝐾 ∈ ℕ0) → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V))
20 mpoexga 7758 . . 3 ((dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V)
2119, 20syl 17 . 2 ((𝑀𝑉𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V)
222, 12, 14, 15, 21ovmpod 7284 1 ((𝑀𝑉𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  Vcvv 3479  dom cdm 5536  ‘cfv 6336  (class class class)co 7138   ∈ cmpo 7140  ℕ0cn0 11883  coe1cco1 20332   decompPMat cdecpmat 21356 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-1st 7672  df-2nd 7673  df-decpmat 21357 This theorem is referenced by:  decpmatval  21359
 Copyright terms: Public domain W3C validator