Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decpmatval0 | Structured version Visualization version GIF version |
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, most general version. (Contributed by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
decpmatval0 | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-decpmat 21687 | . . 3 ⊢ decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))) |
3 | dmeq 5787 | . . . . . 6 ⊢ (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀) | |
4 | 3 | adantr 484 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → dom 𝑚 = dom 𝑀) |
5 | 4 | dmeqd 5789 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → dom dom 𝑚 = dom dom 𝑀) |
6 | oveq 7238 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
7 | 6 | fveq2d 6740 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
8 | 7 | adantr 484 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
9 | simpr 488 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾) | |
10 | 8, 9 | fveq12d 6743 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝐾)) |
11 | 5, 5, 10 | mpoeq123dv 7305 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
12 | 11 | adantl 485 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑘 = 𝐾)) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
13 | elex 3439 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
14 | 13 | adantr 484 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ V) |
15 | simpr 488 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
16 | dmexg 7700 | . . . . . 6 ⊢ (𝑀 ∈ 𝑉 → dom 𝑀 ∈ V) | |
17 | 16 | dmexd 7702 | . . . . 5 ⊢ (𝑀 ∈ 𝑉 → dom dom 𝑀 ∈ V) |
18 | 17, 17 | jca 515 | . . . 4 ⊢ (𝑀 ∈ 𝑉 → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V)) |
19 | 18 | adantr 484 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V)) |
20 | mpoexga 7867 | . . 3 ⊢ ((dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V) | |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V) |
22 | 2, 12, 14, 15, 21 | ovmpod 7380 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 Vcvv 3421 dom cdm 5566 ‘cfv 6398 (class class class)co 7232 ∈ cmpo 7234 ℕ0cn0 12115 coe1cco1 21126 decompPMat cdecpmat 21686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-id 5470 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-ov 7235 df-oprab 7236 df-mpo 7237 df-1st 7780 df-2nd 7781 df-decpmat 21687 |
This theorem is referenced by: decpmatval 21689 |
Copyright terms: Public domain | W3C validator |