![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decpmatval | Structured version Visualization version GIF version |
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, general version for arbitrary matrices. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
decpmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
decpmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
decpmatval | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmatval0 22065 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) | |
2 | decpmatval.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | decpmatval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
5 | 2, 3, 4 | matbas2i 21723 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
6 | elmapi 8745 | . . . . 5 ⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
7 | fdm 6674 | . . . . . . 7 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → dom 𝑀 = (𝑁 × 𝑁)) | |
8 | 7 | dmeqd 5859 | . . . . . 6 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → dom dom 𝑀 = dom (𝑁 × 𝑁)) |
9 | dmxpid 5883 | . . . . . 6 ⊢ dom (𝑁 × 𝑁) = 𝑁 | |
10 | 8, 9 | eqtrdi 2793 | . . . . 5 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → dom dom 𝑀 = 𝑁) |
11 | 5, 6, 10 | 3syl 18 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → dom dom 𝑀 = 𝑁) |
12 | 11 | adantr 481 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → dom dom 𝑀 = 𝑁) |
13 | eqidd 2738 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) = ((coe1‘(𝑖𝑀𝑗))‘𝐾)) | |
14 | 12, 12, 13 | mpoeq123dv 7426 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
15 | 1, 14 | eqtrd 2777 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 × cxp 5629 dom cdm 5631 ⟶wf 6489 ‘cfv 6493 (class class class)co 7351 ∈ cmpo 7353 ↑m cmap 8723 ℕ0cn0 12371 Basecbs 17043 coe1cco1 21501 Mat cmat 21706 decompPMat cdecpmat 22063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-ot 4593 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-om 7795 df-1st 7913 df-2nd 7914 df-supp 8085 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-1o 8404 df-er 8606 df-map 8725 df-ixp 8794 df-en 8842 df-dom 8843 df-sdom 8844 df-fin 8845 df-fsupp 9264 df-sup 9336 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-nn 12112 df-2 12174 df-3 12175 df-4 12176 df-5 12177 df-6 12178 df-7 12179 df-8 12180 df-9 12181 df-n0 12372 df-z 12458 df-dec 12577 df-uz 12722 df-fz 13379 df-struct 16979 df-sets 16996 df-slot 17014 df-ndx 17026 df-base 17044 df-ress 17073 df-plusg 17106 df-mulr 17107 df-sca 17109 df-vsca 17110 df-ip 17111 df-tset 17112 df-ple 17113 df-ds 17115 df-hom 17117 df-cco 17118 df-0g 17283 df-prds 17289 df-pws 17291 df-sra 20586 df-rgmod 20587 df-dsmm 21091 df-frlm 21106 df-mat 21707 df-decpmat 22064 |
This theorem is referenced by: decpmate 22067 decpmatcl 22068 decpmatid 22071 decpmatmulsumfsupp 22074 monmatcollpw 22080 pm2mpf1 22100 mp2pm2mplem3 22109 pm2mpghm 22117 pm2mpmhmlem1 22119 |
Copyright terms: Public domain | W3C validator |