![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decpmatval | Structured version Visualization version GIF version |
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, general version for arbitrary matrices. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
decpmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
decpmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
decpmatval | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmatval0 22751 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) | |
2 | decpmatval.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | eqid 2726 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | decpmatval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
5 | 2, 3, 4 | matbas2i 22409 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
6 | elmapi 8867 | . . . . 5 ⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
7 | fdm 6726 | . . . . . . 7 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → dom 𝑀 = (𝑁 × 𝑁)) | |
8 | 7 | dmeqd 5902 | . . . . . 6 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → dom dom 𝑀 = dom (𝑁 × 𝑁)) |
9 | dmxpid 5926 | . . . . . 6 ⊢ dom (𝑁 × 𝑁) = 𝑁 | |
10 | 8, 9 | eqtrdi 2782 | . . . . 5 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → dom dom 𝑀 = 𝑁) |
11 | 5, 6, 10 | 3syl 18 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → dom dom 𝑀 = 𝑁) |
12 | 11 | adantr 479 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → dom dom 𝑀 = 𝑁) |
13 | eqidd 2727 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) = ((coe1‘(𝑖𝑀𝑗))‘𝐾)) | |
14 | 12, 12, 13 | mpoeq123dv 7489 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
15 | 1, 14 | eqtrd 2766 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 × cxp 5670 dom cdm 5672 ⟶wf 6539 ‘cfv 6543 (class class class)co 7413 ∈ cmpo 7415 ↑m cmap 8844 ℕ0cn0 12515 Basecbs 17205 coe1cco1 22160 Mat cmat 22392 decompPMat cdecpmat 22749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4906 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-supp 8164 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8846 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9396 df-sup 9475 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-2 12318 df-3 12319 df-4 12320 df-5 12321 df-6 12322 df-7 12323 df-8 12324 df-9 12325 df-n0 12516 df-z 12602 df-dec 12721 df-uz 12866 df-fz 13530 df-struct 17141 df-sets 17158 df-slot 17176 df-ndx 17188 df-base 17206 df-ress 17235 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-hom 17282 df-cco 17283 df-0g 17448 df-prds 17454 df-pws 17456 df-sra 21144 df-rgmod 21145 df-dsmm 21723 df-frlm 21738 df-mat 22393 df-decpmat 22750 |
This theorem is referenced by: decpmate 22753 decpmatcl 22754 decpmatid 22757 decpmatmulsumfsupp 22760 monmatcollpw 22766 pm2mpf1 22786 mp2pm2mplem3 22795 pm2mpghm 22803 pm2mpmhmlem1 22805 |
Copyright terms: Public domain | W3C validator |