![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decpmatval | Structured version Visualization version GIF version |
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, general version for arbitrary matrices. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
decpmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
decpmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
decpmatval | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmatval0 22097 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) | |
2 | decpmatval.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | decpmatval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
5 | 2, 3, 4 | matbas2i 21755 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
6 | elmapi 8783 | . . . . 5 ⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
7 | fdm 6674 | . . . . . . 7 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → dom 𝑀 = (𝑁 × 𝑁)) | |
8 | 7 | dmeqd 5859 | . . . . . 6 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → dom dom 𝑀 = dom (𝑁 × 𝑁)) |
9 | dmxpid 5883 | . . . . . 6 ⊢ dom (𝑁 × 𝑁) = 𝑁 | |
10 | 8, 9 | eqtrdi 2792 | . . . . 5 ⊢ (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → dom dom 𝑀 = 𝑁) |
11 | 5, 6, 10 | 3syl 18 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → dom dom 𝑀 = 𝑁) |
12 | 11 | adantr 481 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → dom dom 𝑀 = 𝑁) |
13 | eqidd 2737 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) = ((coe1‘(𝑖𝑀𝑗))‘𝐾)) | |
14 | 12, 12, 13 | mpoeq123dv 7428 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
15 | 1, 14 | eqtrd 2776 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 × cxp 5629 dom cdm 5631 ⟶wf 6489 ‘cfv 6493 (class class class)co 7353 ∈ cmpo 7355 ↑m cmap 8761 ℕ0cn0 12409 Basecbs 17075 coe1cco1 21533 Mat cmat 21738 decompPMat cdecpmat 22095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7668 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-ot 4593 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7309 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7799 df-1st 7917 df-2nd 7918 df-supp 8089 df-frecs 8208 df-wrecs 8239 df-recs 8313 df-rdg 8352 df-1o 8408 df-er 8644 df-map 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9302 df-sup 9374 df-pnf 11187 df-mnf 11188 df-xr 11189 df-ltxr 11190 df-le 11191 df-sub 11383 df-neg 11384 df-nn 12150 df-2 12212 df-3 12213 df-4 12214 df-5 12215 df-6 12216 df-7 12217 df-8 12218 df-9 12219 df-n0 12410 df-z 12496 df-dec 12615 df-uz 12760 df-fz 13417 df-struct 17011 df-sets 17028 df-slot 17046 df-ndx 17058 df-base 17076 df-ress 17105 df-plusg 17138 df-mulr 17139 df-sca 17141 df-vsca 17142 df-ip 17143 df-tset 17144 df-ple 17145 df-ds 17147 df-hom 17149 df-cco 17150 df-0g 17315 df-prds 17321 df-pws 17323 df-sra 20618 df-rgmod 20619 df-dsmm 21123 df-frlm 21138 df-mat 21739 df-decpmat 22096 |
This theorem is referenced by: decpmate 22099 decpmatcl 22100 decpmatid 22103 decpmatmulsumfsupp 22106 monmatcollpw 22112 pm2mpf1 22132 mp2pm2mplem3 22141 pm2mpghm 22149 pm2mpmhmlem1 22151 |
Copyright terms: Public domain | W3C validator |