MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatval Structured version   Visualization version   GIF version

Theorem decpmatval 22266
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, general version for arbitrary matrices. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
decpmatval.a 𝐴 = (𝑁 Mat 𝑅)
decpmatval.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
decpmatval ((𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝑀,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝑅(𝑖,𝑗)   𝑁(𝑖,𝑗)

Proof of Theorem decpmatval
StepHypRef Expression
1 decpmatval0 22265 . 2 ((𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
2 decpmatval.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
3 eqid 2732 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
4 decpmatval.b . . . . . 6 𝐵 = (Base‘𝐴)
52, 3, 4matbas2i 21923 . . . . 5 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
6 elmapi 8842 . . . . 5 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
7 fdm 6726 . . . . . . 7 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → dom 𝑀 = (𝑁 × 𝑁))
87dmeqd 5905 . . . . . 6 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → dom dom 𝑀 = dom (𝑁 × 𝑁))
9 dmxpid 5929 . . . . . 6 dom (𝑁 × 𝑁) = 𝑁
108, 9eqtrdi 2788 . . . . 5 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → dom dom 𝑀 = 𝑁)
115, 6, 103syl 18 . . . 4 (𝑀𝐵 → dom dom 𝑀 = 𝑁)
1211adantr 481 . . 3 ((𝑀𝐵𝐾 ∈ ℕ0) → dom dom 𝑀 = 𝑁)
13 eqidd 2733 . . 3 ((𝑀𝐵𝐾 ∈ ℕ0) → ((coe1‘(𝑖𝑀𝑗))‘𝐾) = ((coe1‘(𝑖𝑀𝑗))‘𝐾))
1412, 12, 13mpoeq123dv 7483 . 2 ((𝑀𝐵𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
151, 14eqtrd 2772 1 ((𝑀𝐵𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   × cxp 5674  dom cdm 5676  wf 6539  cfv 6543  (class class class)co 7408  cmpo 7410  m cmap 8819  0cn0 12471  Basecbs 17143  coe1cco1 21701   Mat cmat 21906   decompPMat cdecpmat 22263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17386  df-prds 17392  df-pws 17394  df-sra 20784  df-rgmod 20785  df-dsmm 21286  df-frlm 21301  df-mat 21907  df-decpmat 22264
This theorem is referenced by:  decpmate  22267  decpmatcl  22268  decpmatid  22271  decpmatmulsumfsupp  22274  monmatcollpw  22280  pm2mpf1  22300  mp2pm2mplem3  22309  pm2mpghm  22317  pm2mpmhmlem1  22319
  Copyright terms: Public domain W3C validator