MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reeff1 Structured version   Visualization version   GIF version

Theorem reeff1 16095
Description: The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1 (exp ↾ ℝ):ℝ–1-1→ℝ+

Proof of Theorem reeff1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eff 16054 . . . . 5 exp:ℂ⟶ℂ
2 ffn 6691 . . . . 5 (exp:ℂ⟶ℂ → exp Fn ℂ)
31, 2ax-mp 5 . . . 4 exp Fn ℂ
4 ax-resscn 11132 . . . 4 ℝ ⊆ ℂ
5 fnssres 6644 . . . 4 ((exp Fn ℂ ∧ ℝ ⊆ ℂ) → (exp ↾ ℝ) Fn ℝ)
63, 4, 5mp2an 692 . . 3 (exp ↾ ℝ) Fn ℝ
7 fvres 6880 . . . . 5 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
8 rpefcl 16079 . . . . 5 (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ+)
97, 8eqeltrd 2829 . . . 4 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) ∈ ℝ+)
109rgen 3047 . . 3 𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) ∈ ℝ+
11 ffnfv 7094 . . 3 ((exp ↾ ℝ):ℝ⟶ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ∀𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) ∈ ℝ+))
126, 10, 11mpbir2an 711 . 2 (exp ↾ ℝ):ℝ⟶ℝ+
13 fvres 6880 . . . . 5 (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦))
147, 13eqeqan12d 2744 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) ↔ (exp‘𝑥) = (exp‘𝑦)))
15 reef11 16094 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp‘𝑥) = (exp‘𝑦) ↔ 𝑥 = 𝑦))
1615biimpd 229 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp‘𝑥) = (exp‘𝑦) → 𝑥 = 𝑦))
1714, 16sylbid 240 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦))
1817rgen2 3178 . 2 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦)
19 dff13 7232 . 2 ((exp ↾ ℝ):ℝ–1-1→ℝ+ ↔ ((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦)))
2012, 18, 19mpbir2an 711 1 (exp ↾ ℝ):ℝ–1-1→ℝ+
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917  cres 5643   Fn wfn 6509  wf 6510  1-1wf1 6511  cfv 6514  cc 11073  cr 11074  +crp 12958  expce 16034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040
This theorem is referenced by:  reeff1o  26364  seff  44305
  Copyright terms: Public domain W3C validator