| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reeff1 | Structured version Visualization version GIF version | ||
| Description: The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| reeff1 | ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff 15983 | . . . . 5 ⊢ exp:ℂ⟶ℂ | |
| 2 | ffn 6646 | . . . . 5 ⊢ (exp:ℂ⟶ℂ → exp Fn ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ exp Fn ℂ |
| 4 | ax-resscn 11058 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 5 | fnssres 6599 | . . . 4 ⊢ ((exp Fn ℂ ∧ ℝ ⊆ ℂ) → (exp ↾ ℝ) Fn ℝ) | |
| 6 | 3, 4, 5 | mp2an 692 | . . 3 ⊢ (exp ↾ ℝ) Fn ℝ |
| 7 | fvres 6836 | . . . . 5 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
| 8 | rpefcl 16008 | . . . . 5 ⊢ (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ+) | |
| 9 | 7, 8 | eqeltrd 2831 | . . . 4 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) ∈ ℝ+) |
| 10 | 9 | rgen 3049 | . . 3 ⊢ ∀𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) ∈ ℝ+ |
| 11 | ffnfv 7047 | . . 3 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ∀𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) ∈ ℝ+)) | |
| 12 | 6, 10, 11 | mpbir2an 711 | . 2 ⊢ (exp ↾ ℝ):ℝ⟶ℝ+ |
| 13 | fvres 6836 | . . . . 5 ⊢ (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦)) | |
| 14 | 7, 13 | eqeqan12d 2745 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) ↔ (exp‘𝑥) = (exp‘𝑦))) |
| 15 | reef11 16023 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp‘𝑥) = (exp‘𝑦) ↔ 𝑥 = 𝑦)) | |
| 16 | 15 | biimpd 229 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp‘𝑥) = (exp‘𝑦) → 𝑥 = 𝑦)) |
| 17 | 14, 16 | sylbid 240 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦)) |
| 18 | 17 | rgen2 3172 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦) |
| 19 | dff13 7183 | . 2 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ ↔ ((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦))) | |
| 20 | 12, 18, 19 | mpbir2an 711 | 1 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ↾ cres 5613 Fn wfn 6471 ⟶wf 6472 –1-1→wf1 6473 ‘cfv 6476 ℂcc 10999 ℝcr 11000 ℝ+crp 12885 expce 15963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-ico 13246 df-fz 13403 df-fzo 13550 df-fl 13691 df-seq 13904 df-exp 13964 df-fac 14176 df-bc 14205 df-hash 14233 df-shft 14969 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-limsup 15373 df-clim 15390 df-rlim 15391 df-sum 15589 df-ef 15969 |
| This theorem is referenced by: reeff1o 26379 seff 44342 |
| Copyright terms: Public domain | W3C validator |