MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsptpcl Structured version   Visualization version   GIF version

Theorem lsptpcl 19751
Description: The span of an unordered triple is a subspace (frequently used special case of lspcl 19748). (Contributed by NM, 22-May-2015.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
lspprcl.w (𝜑𝑊 ∈ LMod)
lspprcl.x (𝜑𝑋𝑉)
lspprcl.y (𝜑𝑌𝑉)
lsptpcl.z (𝜑𝑍𝑉)
Assertion
Ref Expression
lsptpcl (𝜑 → (𝑁‘{𝑋, 𝑌, 𝑍}) ∈ 𝑆)

Proof of Theorem lsptpcl
StepHypRef Expression
1 lspprcl.w . 2 (𝜑𝑊 ∈ LMod)
2 df-tp 4555 . . 3 {𝑋, 𝑌, 𝑍} = ({𝑋, 𝑌} ∪ {𝑍})
3 lspprcl.x . . . . 5 (𝜑𝑋𝑉)
4 lspprcl.y . . . . 5 (𝜑𝑌𝑉)
53, 4prssd 4739 . . . 4 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
6 lsptpcl.z . . . . 5 (𝜑𝑍𝑉)
76snssd 4726 . . . 4 (𝜑 → {𝑍} ⊆ 𝑉)
85, 7unssd 4148 . . 3 (𝜑 → ({𝑋, 𝑌} ∪ {𝑍}) ⊆ 𝑉)
92, 8eqsstrid 4001 . 2 (𝜑 → {𝑋, 𝑌, 𝑍} ⊆ 𝑉)
10 lspval.v . . 3 𝑉 = (Base‘𝑊)
11 lspval.s . . 3 𝑆 = (LSubSp‘𝑊)
12 lspval.n . . 3 𝑁 = (LSpan‘𝑊)
1310, 11, 12lspcl 19748 . 2 ((𝑊 ∈ LMod ∧ {𝑋, 𝑌, 𝑍} ⊆ 𝑉) → (𝑁‘{𝑋, 𝑌, 𝑍}) ∈ 𝑆)
141, 9, 13syl2anc 587 1 (𝜑 → (𝑁‘{𝑋, 𝑌, 𝑍}) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  cun 3917  wss 3919  {csn 4550  {cpr 4552  {ctp 4554  cfv 6343  Basecbs 16483  LModclmod 19634  LSubSpclss 19703  LSpanclspn 19743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mgp 19240  df-ur 19252  df-ring 19299  df-lmod 19636  df-lss 19704  df-lsp 19744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator