![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpfi | Structured version Visualization version GIF version |
Description: An unordered triple is finite. (Contributed by Mario Carneiro, 28-Sep-2013.) |
Ref | Expression |
---|---|
tpfi | ⊢ {𝐴, 𝐵, 𝐶} ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4653 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | prfi 9391 | . . 3 ⊢ {𝐴, 𝐵} ∈ Fin | |
3 | snfi 9109 | . . 3 ⊢ {𝐶} ∈ Fin | |
4 | unfi 9238 | . . 3 ⊢ (({𝐴, 𝐵} ∈ Fin ∧ {𝐶} ∈ Fin) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin) | |
5 | 2, 3, 4 | mp2an 691 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin |
6 | 1, 5 | eqeltri 2840 | 1 ⊢ {𝐴, 𝐵, 𝐶} ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∪ cun 3974 {csn 4648 {cpr 4650 {ctp 4652 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-2o 8523 df-en 9004 df-fin 9007 |
This theorem is referenced by: hash7g 14535 hashge3el3dif 14536 tpf1o 14550 s7f1o 15015 sumtp 15797 lcmftp 16683 perfectlem2 27292 prodtp 32831 gsumtp 33039 hgt750lemg 34631 limsupequzlem 45643 fourierdlem102 46129 fourierdlem114 46141 etransclem48 46203 perfectALTVlem2 47596 |
Copyright terms: Public domain | W3C validator |