MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpfi Structured version   Visualization version   GIF version

Theorem tpfi 9325
Description: An unordered triple is finite. (Contributed by Mario Carneiro, 28-Sep-2013.)
Assertion
Ref Expression
tpfi {𝐴, 𝐵, 𝐶} ∈ Fin

Proof of Theorem tpfi
StepHypRef Expression
1 df-tp 4632 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
2 prfi 9324 . . 3 {𝐴, 𝐵} ∈ Fin
3 snfi 9046 . . 3 {𝐶} ∈ Fin
4 unfi 9174 . . 3 (({𝐴, 𝐵} ∈ Fin ∧ {𝐶} ∈ Fin) → ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin)
52, 3, 4mp2an 688 . 2 ({𝐴, 𝐵} ∪ {𝐶}) ∈ Fin
61, 5eqeltri 2827 1 {𝐴, 𝐵, 𝐶} ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  cun 3945  {csn 4627  {cpr 4629  {ctp 4631  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7858  df-1o 8468  df-en 8942  df-fin 8945
This theorem is referenced by:  hashge3el3dif  14451  sumtp  15699  lcmftp  16577  perfectlem2  26969  prodtp  32300  hgt750lemg  33964  limsupequzlem  44736  fourierdlem102  45222  fourierdlem114  45234  etransclem48  45296  perfectALTVlem2  46688
  Copyright terms: Public domain W3C validator