Step | Hyp | Ref
| Expression |
1 | | dfiso3.b |
. . 3
β’ π΅ = (BaseβπΆ) |
2 | | dfiso3.h |
. . 3
β’ π» = (Hom βπΆ) |
3 | | dfiso3.c |
. . 3
β’ (π β πΆ β Cat) |
4 | | dfiso3.i |
. . 3
β’ πΌ = (IsoβπΆ) |
5 | | dfiso3.x |
. . 3
β’ (π β π β π΅) |
6 | | dfiso3.y |
. . 3
β’ (π β π β π΅) |
7 | | dfiso3.f |
. . 3
β’ (π β πΉ β (ππ»π)) |
8 | | eqid 2730 |
. . 3
β’
(IdβπΆ) =
(IdβπΆ) |
9 | | eqid 2730 |
. . 3
β’
(β¨π, πβ©(compβπΆ)π) = (β¨π, πβ©(compβπΆ)π) |
10 | | eqid 2730 |
. . 3
β’
(β¨π, πβ©(compβπΆ)π) = (β¨π, πβ©(compβπΆ)π) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dfiso2 17725 |
. 2
β’ (π β (πΉ β (ππΌπ) β βπ β (ππ»π)((π(β¨π, πβ©(compβπΆ)π)πΉ) = ((IdβπΆ)βπ) β§ (πΉ(β¨π, πβ©(compβπΆ)π)π) = ((IdβπΆ)βπ)))) |
12 | | eqid 2730 |
. . . . . 6
β’
(compβπΆ) =
(compβπΆ) |
13 | | dfiso3.s |
. . . . . 6
β’ π = (SectβπΆ) |
14 | 3 | adantr 479 |
. . . . . 6
β’ ((π β§ π β (ππ»π)) β πΆ β Cat) |
15 | 6 | adantr 479 |
. . . . . 6
β’ ((π β§ π β (ππ»π)) β π β π΅) |
16 | 5 | adantr 479 |
. . . . . 6
β’ ((π β§ π β (ππ»π)) β π β π΅) |
17 | | simpr 483 |
. . . . . 6
β’ ((π β§ π β (ππ»π)) β π β (ππ»π)) |
18 | 7 | adantr 479 |
. . . . . 6
β’ ((π β§ π β (ππ»π)) β πΉ β (ππ»π)) |
19 | 1, 2, 12, 8, 13, 14, 15, 16, 17, 18 | issect2 17707 |
. . . . 5
β’ ((π β§ π β (ππ»π)) β (π(πππ)πΉ β (πΉ(β¨π, πβ©(compβπΆ)π)π) = ((IdβπΆ)βπ))) |
20 | 1, 2, 12, 8, 13, 14, 16, 15, 18, 17 | issect2 17707 |
. . . . 5
β’ ((π β§ π β (ππ»π)) β (πΉ(πππ)π β (π(β¨π, πβ©(compβπΆ)π)πΉ) = ((IdβπΆ)βπ))) |
21 | 19, 20 | anbi12d 629 |
. . . 4
β’ ((π β§ π β (ππ»π)) β ((π(πππ)πΉ β§ πΉ(πππ)π) β ((πΉ(β¨π, πβ©(compβπΆ)π)π) = ((IdβπΆ)βπ) β§ (π(β¨π, πβ©(compβπΆ)π)πΉ) = ((IdβπΆ)βπ)))) |
22 | | ancom 459 |
. . . 4
β’ (((πΉ(β¨π, πβ©(compβπΆ)π)π) = ((IdβπΆ)βπ) β§ (π(β¨π, πβ©(compβπΆ)π)πΉ) = ((IdβπΆ)βπ)) β ((π(β¨π, πβ©(compβπΆ)π)πΉ) = ((IdβπΆ)βπ) β§ (πΉ(β¨π, πβ©(compβπΆ)π)π) = ((IdβπΆ)βπ))) |
23 | 21, 22 | bitr2di 287 |
. . 3
β’ ((π β§ π β (ππ»π)) β (((π(β¨π, πβ©(compβπΆ)π)πΉ) = ((IdβπΆ)βπ) β§ (πΉ(β¨π, πβ©(compβπΆ)π)π) = ((IdβπΆ)βπ)) β (π(πππ)πΉ β§ πΉ(πππ)π))) |
24 | 23 | rexbidva 3174 |
. 2
β’ (π β (βπ β (ππ»π)((π(β¨π, πβ©(compβπΆ)π)πΉ) = ((IdβπΆ)βπ) β§ (πΉ(β¨π, πβ©(compβπΆ)π)π) = ((IdβπΆ)βπ)) β βπ β (ππ»π)(π(πππ)πΉ β§ πΉ(πππ)π))) |
25 | 11, 24 | bitrd 278 |
1
β’ (π β (πΉ β (ππΌπ) β βπ β (ππ»π)(π(πππ)πΉ β§ πΉ(πππ)π))) |