MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiso3 Structured version   Visualization version   GIF version

Theorem dfiso3 17786
Description: Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2020.)
Hypotheses
Ref Expression
dfiso3.b 𝐵 = (Base‘𝐶)
dfiso3.h 𝐻 = (Hom ‘𝐶)
dfiso3.i 𝐼 = (Iso‘𝐶)
dfiso3.s 𝑆 = (Sect‘𝐶)
dfiso3.c (𝜑𝐶 ∈ Cat)
dfiso3.x (𝜑𝑋𝐵)
dfiso3.y (𝜑𝑌𝐵)
dfiso3.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
dfiso3 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹𝐹(𝑋𝑆𝑌)𝑔)))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑔,𝐻   𝑔,𝐼   𝑔,𝑋   𝑔,𝑌   𝜑,𝑔
Allowed substitution hints:   𝐵(𝑔)   𝑆(𝑔)

Proof of Theorem dfiso3
StepHypRef Expression
1 dfiso3.b . . 3 𝐵 = (Base‘𝐶)
2 dfiso3.h . . 3 𝐻 = (Hom ‘𝐶)
3 dfiso3.c . . 3 (𝜑𝐶 ∈ Cat)
4 dfiso3.i . . 3 𝐼 = (Iso‘𝐶)
5 dfiso3.x . . 3 (𝜑𝑋𝐵)
6 dfiso3.y . . 3 (𝜑𝑌𝐵)
7 dfiso3.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
8 eqid 2735 . . 3 (Id‘𝐶) = (Id‘𝐶)
9 eqid 2735 . . 3 (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋) = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
10 eqid 2735 . . 3 (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10dfiso2 17785 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌))))
12 eqid 2735 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
13 dfiso3.s . . . . . 6 𝑆 = (Sect‘𝐶)
143adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → 𝐶 ∈ Cat)
156adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → 𝑌𝐵)
165adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → 𝑋𝐵)
17 simpr 484 . . . . . 6 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → 𝑔 ∈ (𝑌𝐻𝑋))
187adantr 480 . . . . . 6 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → 𝐹 ∈ (𝑋𝐻𝑌))
191, 2, 12, 8, 13, 14, 15, 16, 17, 18issect2 17767 . . . . 5 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → (𝑔(𝑌𝑆𝑋)𝐹 ↔ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)))
201, 2, 12, 8, 13, 14, 16, 15, 18, 17issect2 17767 . . . . 5 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → (𝐹(𝑋𝑆𝑌)𝑔 ↔ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
2119, 20anbi12d 632 . . . 4 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → ((𝑔(𝑌𝑆𝑋)𝐹𝐹(𝑋𝑆𝑌)𝑔) ↔ ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
22 ancom 460 . . . 4 (((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)))
2321, 22bitr2di 288 . . 3 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → (((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)) ↔ (𝑔(𝑌𝑆𝑋)𝐹𝐹(𝑋𝑆𝑌)𝑔)))
2423rexbidva 3162 . 2 (𝜑 → (∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹𝐹(𝑋𝑆𝑌)𝑔)))
2511, 24bitrd 279 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹𝐹(𝑋𝑆𝑌)𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  cop 4607   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  Hom chom 17282  compcco 17283  Catccat 17676  Idccid 17677  Sectcsect 17757  Isociso 17759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-sect 17760  df-inv 17761  df-iso 17762
This theorem is referenced by:  thinciso  49356
  Copyright terms: Public domain W3C validator