MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiso3 Structured version   Visualization version   GIF version

Theorem dfiso3 17726
Description: Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2020.)
Hypotheses
Ref Expression
dfiso3.b 𝐡 = (Baseβ€˜πΆ)
dfiso3.h 𝐻 = (Hom β€˜πΆ)
dfiso3.i 𝐼 = (Isoβ€˜πΆ)
dfiso3.s 𝑆 = (Sectβ€˜πΆ)
dfiso3.c (πœ‘ β†’ 𝐢 ∈ Cat)
dfiso3.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
dfiso3.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
dfiso3.f (πœ‘ β†’ 𝐹 ∈ (π‘‹π»π‘Œ))
Assertion
Ref Expression
dfiso3 (πœ‘ β†’ (𝐹 ∈ (π‘‹πΌπ‘Œ) ↔ βˆƒπ‘” ∈ (π‘Œπ»π‘‹)(𝑔(π‘Œπ‘†π‘‹)𝐹 ∧ 𝐹(π‘‹π‘†π‘Œ)𝑔)))
Distinct variable groups:   𝐢,𝑔   𝑔,𝐹   𝑔,𝐻   𝑔,𝐼   𝑔,𝑋   𝑔,π‘Œ   πœ‘,𝑔
Allowed substitution hints:   𝐡(𝑔)   𝑆(𝑔)

Proof of Theorem dfiso3
StepHypRef Expression
1 dfiso3.b . . 3 𝐡 = (Baseβ€˜πΆ)
2 dfiso3.h . . 3 𝐻 = (Hom β€˜πΆ)
3 dfiso3.c . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
4 dfiso3.i . . 3 𝐼 = (Isoβ€˜πΆ)
5 dfiso3.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
6 dfiso3.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝐡)
7 dfiso3.f . . 3 (πœ‘ β†’ 𝐹 ∈ (π‘‹π»π‘Œ))
8 eqid 2730 . . 3 (Idβ€˜πΆ) = (Idβ€˜πΆ)
9 eqid 2730 . . 3 (βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋) = (βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)
10 eqid 2730 . . 3 (βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ) = (βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10dfiso2 17725 . 2 (πœ‘ β†’ (𝐹 ∈ (π‘‹πΌπ‘Œ) ↔ βˆƒπ‘” ∈ (π‘Œπ»π‘‹)((𝑔(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹) ∧ (𝐹(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝑔) = ((Idβ€˜πΆ)β€˜π‘Œ))))
12 eqid 2730 . . . . . 6 (compβ€˜πΆ) = (compβ€˜πΆ)
13 dfiso3.s . . . . . 6 𝑆 = (Sectβ€˜πΆ)
143adantr 479 . . . . . 6 ((πœ‘ ∧ 𝑔 ∈ (π‘Œπ»π‘‹)) β†’ 𝐢 ∈ Cat)
156adantr 479 . . . . . 6 ((πœ‘ ∧ 𝑔 ∈ (π‘Œπ»π‘‹)) β†’ π‘Œ ∈ 𝐡)
165adantr 479 . . . . . 6 ((πœ‘ ∧ 𝑔 ∈ (π‘Œπ»π‘‹)) β†’ 𝑋 ∈ 𝐡)
17 simpr 483 . . . . . 6 ((πœ‘ ∧ 𝑔 ∈ (π‘Œπ»π‘‹)) β†’ 𝑔 ∈ (π‘Œπ»π‘‹))
187adantr 479 . . . . . 6 ((πœ‘ ∧ 𝑔 ∈ (π‘Œπ»π‘‹)) β†’ 𝐹 ∈ (π‘‹π»π‘Œ))
191, 2, 12, 8, 13, 14, 15, 16, 17, 18issect2 17707 . . . . 5 ((πœ‘ ∧ 𝑔 ∈ (π‘Œπ»π‘‹)) β†’ (𝑔(π‘Œπ‘†π‘‹)𝐹 ↔ (𝐹(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝑔) = ((Idβ€˜πΆ)β€˜π‘Œ)))
201, 2, 12, 8, 13, 14, 16, 15, 18, 17issect2 17707 . . . . 5 ((πœ‘ ∧ 𝑔 ∈ (π‘Œπ»π‘‹)) β†’ (𝐹(π‘‹π‘†π‘Œ)𝑔 ↔ (𝑔(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹)))
2119, 20anbi12d 629 . . . 4 ((πœ‘ ∧ 𝑔 ∈ (π‘Œπ»π‘‹)) β†’ ((𝑔(π‘Œπ‘†π‘‹)𝐹 ∧ 𝐹(π‘‹π‘†π‘Œ)𝑔) ↔ ((𝐹(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝑔) = ((Idβ€˜πΆ)β€˜π‘Œ) ∧ (𝑔(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹))))
22 ancom 459 . . . 4 (((𝐹(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝑔) = ((Idβ€˜πΆ)β€˜π‘Œ) ∧ (𝑔(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹)) ↔ ((𝑔(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹) ∧ (𝐹(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝑔) = ((Idβ€˜πΆ)β€˜π‘Œ)))
2321, 22bitr2di 287 . . 3 ((πœ‘ ∧ 𝑔 ∈ (π‘Œπ»π‘‹)) β†’ (((𝑔(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹) ∧ (𝐹(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝑔) = ((Idβ€˜πΆ)β€˜π‘Œ)) ↔ (𝑔(π‘Œπ‘†π‘‹)𝐹 ∧ 𝐹(π‘‹π‘†π‘Œ)𝑔)))
2423rexbidva 3174 . 2 (πœ‘ β†’ (βˆƒπ‘” ∈ (π‘Œπ»π‘‹)((𝑔(βŸ¨π‘‹, π‘ŒβŸ©(compβ€˜πΆ)𝑋)𝐹) = ((Idβ€˜πΆ)β€˜π‘‹) ∧ (𝐹(βŸ¨π‘Œ, π‘‹βŸ©(compβ€˜πΆ)π‘Œ)𝑔) = ((Idβ€˜πΆ)β€˜π‘Œ)) ↔ βˆƒπ‘” ∈ (π‘Œπ»π‘‹)(𝑔(π‘Œπ‘†π‘‹)𝐹 ∧ 𝐹(π‘‹π‘†π‘Œ)𝑔)))
2511, 24bitrd 278 1 (πœ‘ β†’ (𝐹 ∈ (π‘‹πΌπ‘Œ) ↔ βˆƒπ‘” ∈ (π‘Œπ»π‘‹)(𝑔(π‘Œπ‘†π‘‹)𝐹 ∧ 𝐹(π‘‹π‘†π‘Œ)𝑔)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆƒwrex 3068  βŸ¨cop 4635   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7413  Basecbs 17150  Hom chom 17214  compcco 17215  Catccat 17614  Idccid 17615  Sectcsect 17697  Isociso 17699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7979  df-2nd 7980  df-sect 17700  df-inv 17701  df-iso 17702
This theorem is referenced by:  thinciso  47769
  Copyright terms: Public domain W3C validator