| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfiso3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2020.) |
| Ref | Expression |
|---|---|
| dfiso3.b | ⊢ 𝐵 = (Base‘𝐶) |
| dfiso3.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| dfiso3.i | ⊢ 𝐼 = (Iso‘𝐶) |
| dfiso3.s | ⊢ 𝑆 = (Sect‘𝐶) |
| dfiso3.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| dfiso3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| dfiso3.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| dfiso3.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| dfiso3 | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiso3.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | dfiso3.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | dfiso3.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | dfiso3.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
| 5 | dfiso3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | dfiso3.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | dfiso3.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 8 | eqid 2731 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 9 | eqid 2731 | . . 3 ⊢ (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) = (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) | |
| 10 | eqid 2731 | . . 3 ⊢ (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dfiso2 17679 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)))) |
| 12 | eqid 2731 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 13 | dfiso3.s | . . . . . 6 ⊢ 𝑆 = (Sect‘𝐶) | |
| 14 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝐶 ∈ Cat) |
| 15 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝑌 ∈ 𝐵) |
| 16 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝑋 ∈ 𝐵) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝑔 ∈ (𝑌𝐻𝑋)) | |
| 18 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝐹 ∈ (𝑋𝐻𝑌)) |
| 19 | 1, 2, 12, 8, 13, 14, 15, 16, 17, 18 | issect2 17661 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → (𝑔(𝑌𝑆𝑋)𝐹 ↔ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌))) |
| 20 | 1, 2, 12, 8, 13, 14, 16, 15, 18, 17 | issect2 17661 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → (𝐹(𝑋𝑆𝑌)𝑔 ↔ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) |
| 21 | 19, 20 | anbi12d 632 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → ((𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔) ↔ ((𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌) ∧ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 22 | ancom 460 | . . . 4 ⊢ (((𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌) ∧ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌))) | |
| 23 | 21, 22 | bitr2di 288 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → (((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)) ↔ (𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔))) |
| 24 | 23 | rexbidva 3154 | . 2 ⊢ (𝜑 → (∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔))) |
| 25 | 11, 24 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 〈cop 4579 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Hom chom 17172 compcco 17173 Catccat 17570 Idccid 17571 Sectcsect 17651 Isociso 17653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-sect 17654 df-inv 17655 df-iso 17656 |
| This theorem is referenced by: thinciso 49510 |
| Copyright terms: Public domain | W3C validator |