MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiso3 Structured version   Visualization version   GIF version

Theorem dfiso3 17035
Description: Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2020.)
Hypotheses
Ref Expression
dfiso3.b 𝐵 = (Base‘𝐶)
dfiso3.h 𝐻 = (Hom ‘𝐶)
dfiso3.i 𝐼 = (Iso‘𝐶)
dfiso3.s 𝑆 = (Sect‘𝐶)
dfiso3.c (𝜑𝐶 ∈ Cat)
dfiso3.x (𝜑𝑋𝐵)
dfiso3.y (𝜑𝑌𝐵)
dfiso3.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
dfiso3 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹𝐹(𝑋𝑆𝑌)𝑔)))
Distinct variable groups:   𝐶,𝑔   𝑔,𝐹   𝑔,𝐻   𝑔,𝐼   𝑔,𝑋   𝑔,𝑌   𝜑,𝑔
Allowed substitution hints:   𝐵(𝑔)   𝑆(𝑔)

Proof of Theorem dfiso3
StepHypRef Expression
1 dfiso3.b . . 3 𝐵 = (Base‘𝐶)
2 dfiso3.h . . 3 𝐻 = (Hom ‘𝐶)
3 dfiso3.c . . 3 (𝜑𝐶 ∈ Cat)
4 dfiso3.i . . 3 𝐼 = (Iso‘𝐶)
5 dfiso3.x . . 3 (𝜑𝑋𝐵)
6 dfiso3.y . . 3 (𝜑𝑌𝐵)
7 dfiso3.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
8 eqid 2798 . . 3 (Id‘𝐶) = (Id‘𝐶)
9 eqid 2798 . . 3 (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋) = (⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)
10 eqid 2798 . . 3 (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌) = (⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10dfiso2 17034 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌))))
12 eqid 2798 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
13 dfiso3.s . . . . . 6 𝑆 = (Sect‘𝐶)
143adantr 484 . . . . . 6 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → 𝐶 ∈ Cat)
156adantr 484 . . . . . 6 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → 𝑌𝐵)
165adantr 484 . . . . . 6 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → 𝑋𝐵)
17 simpr 488 . . . . . 6 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → 𝑔 ∈ (𝑌𝐻𝑋))
187adantr 484 . . . . . 6 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → 𝐹 ∈ (𝑋𝐻𝑌))
191, 2, 12, 8, 13, 14, 15, 16, 17, 18issect2 17016 . . . . 5 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → (𝑔(𝑌𝑆𝑋)𝐹 ↔ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)))
201, 2, 12, 8, 13, 14, 16, 15, 18, 17issect2 17016 . . . . 5 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → (𝐹(𝑋𝑆𝑌)𝑔 ↔ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
2119, 20anbi12d 633 . . . 4 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → ((𝑔(𝑌𝑆𝑋)𝐹𝐹(𝑋𝑆𝑌)𝑔) ↔ ((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
22 ancom 464 . . . 4 (((𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌) ∧ (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)))
2321, 22syl6rbb 291 . . 3 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → (((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)) ↔ (𝑔(𝑌𝑆𝑋)𝐹𝐹(𝑋𝑆𝑌)𝑔)))
2423rexbidva 3255 . 2 (𝜑 → (∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹𝐹(𝑋𝑆𝑌)𝑔)))
2511, 24bitrd 282 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹𝐹(𝑋𝑆𝑌)𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  cop 4531   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  Hom chom 16568  compcco 16569  Catccat 16927  Idccid 16928  Sectcsect 17006  Isociso 17008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-sect 17009  df-inv 17010  df-iso 17011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator