Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issect2 | Structured version Visualization version GIF version |
Description: Property of being a section. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
issect.b | ⊢ 𝐵 = (Base‘𝐶) |
issect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
issect.o | ⊢ · = (comp‘𝐶) |
issect.i | ⊢ 1 = (Id‘𝐶) |
issect.s | ⊢ 𝑆 = (Sect‘𝐶) |
issect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
issect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
issect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
issect.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
issect.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑋)) |
Ref | Expression |
---|---|
issect2 | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issect.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
2 | issect.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑋)) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) |
4 | issect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
5 | issect.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | issect.o | . . . 4 ⊢ · = (comp‘𝐶) | |
7 | issect.i | . . . 4 ⊢ 1 = (Id‘𝐶) | |
8 | issect.s | . . . 4 ⊢ 𝑆 = (Sect‘𝐶) | |
9 | issect.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
10 | issect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | issect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | 4, 5, 6, 7, 8, 9, 10, 11 | issect 17465 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)))) |
13 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) | |
14 | 12, 13 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)))) |
15 | 3, 14 | mpbirand 704 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 〈cop 4567 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Hom chom 16973 compcco 16974 Catccat 17373 Idccid 17374 Sectcsect 17456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-sect 17459 |
This theorem is referenced by: sectco 17468 dfiso3 17485 monsect 17495 sectid 17498 invcoisoid 17504 isocoinvid 17505 funcsect 17587 fthsect 17641 fucsect 17690 2initoinv 17725 2termoinv 17732 catcisolem 17825 |
Copyright terms: Public domain | W3C validator |