Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inveq | Structured version Visualization version GIF version |
Description: If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.) (Revised by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
inveq.b | ⊢ 𝐵 = (Base‘𝐶) |
inveq.n | ⊢ 𝑁 = (Inv‘𝐶) |
inveq.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
inveq.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
inveq.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
inveq | ⊢ (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inveq.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2737 | . . 3 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
3 | inveq.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | 3 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝐶 ∈ Cat) |
5 | inveq.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 5 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝑌 ∈ 𝐵) |
7 | inveq.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | 7 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝑋 ∈ 𝐵) |
9 | inveq.n | . . . . . . . 8 ⊢ 𝑁 = (Inv‘𝐶) | |
10 | 1, 9, 3, 7, 5, 2 | isinv 17265 | . . . . . . 7 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))) |
11 | simpr 488 | . . . . . . 7 ⊢ ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) | |
12 | 10, 11 | syl6bi 256 | . . . . . 6 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)) |
13 | 12 | com12 32 | . . . . 5 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → (𝜑 → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)) |
14 | 13 | adantr 484 | . . . 4 ⊢ ((𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾) → (𝜑 → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)) |
15 | 14 | impcom 411 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) |
16 | 1, 9, 3, 7, 5, 2 | isinv 17265 | . . . . . 6 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐾 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐾 ∧ 𝐾(𝑌(Sect‘𝐶)𝑋)𝐹))) |
17 | simpl 486 | . . . . . 6 ⊢ ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐾 ∧ 𝐾(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾) | |
18 | 16, 17 | syl6bi 256 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐾 → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾)) |
19 | 18 | adantld 494 | . . . 4 ⊢ (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾)) |
20 | 19 | imp 410 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾) |
21 | 1, 2, 4, 6, 8, 15, 20 | sectcan 17260 | . 2 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝐺 = 𝐾) |
22 | 21 | ex 416 | 1 ⊢ (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 Catccat 17167 Sectcsect 17249 Invcinv 17250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-cat 17171 df-cid 17172 df-sect 17252 df-inv 17253 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |