MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inveq Structured version   Visualization version   GIF version

Theorem inveq 17403
Description: If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
inveq.b 𝐵 = (Base‘𝐶)
inveq.n 𝑁 = (Inv‘𝐶)
inveq.c (𝜑𝐶 ∈ Cat)
inveq.x (𝜑𝑋𝐵)
inveq.y (𝜑𝑌𝐵)
Assertion
Ref Expression
inveq (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾))

Proof of Theorem inveq
StepHypRef Expression
1 inveq.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2738 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
3 inveq.c . . . 4 (𝜑𝐶 ∈ Cat)
43adantr 480 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝐶 ∈ Cat)
5 inveq.y . . . 4 (𝜑𝑌𝐵)
65adantr 480 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝑌𝐵)
7 inveq.x . . . 4 (𝜑𝑋𝐵)
87adantr 480 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝑋𝐵)
9 inveq.n . . . . . . . 8 𝑁 = (Inv‘𝐶)
101, 9, 3, 7, 5, 2isinv 17389 . . . . . . 7 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
11 simpr 484 . . . . . . 7 ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)
1210, 11syl6bi 252 . . . . . 6 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))
1312com12 32 . . . . 5 (𝐹(𝑋𝑁𝑌)𝐺 → (𝜑𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))
1413adantr 480 . . . 4 ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → (𝜑𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))
1514impcom 407 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)
161, 9, 3, 7, 5, 2isinv 17389 . . . . . 6 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐾 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐾𝐾(𝑌(Sect‘𝐶)𝑋)𝐹)))
17 simpl 482 . . . . . 6 ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐾𝐾(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾)
1816, 17syl6bi 252 . . . . 5 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐾𝐹(𝑋(Sect‘𝐶)𝑌)𝐾))
1918adantld 490 . . . 4 (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾))
2019imp 406 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾)
211, 2, 4, 6, 8, 15, 20sectcan 17384 . 2 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝐺 = 𝐾)
2221ex 412 1 (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  Catccat 17290  Sectcsect 17373  Invcinv 17374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-cat 17294  df-cid 17295  df-sect 17376  df-inv 17377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator