| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inveq | Structured version Visualization version GIF version | ||
| Description: If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.) (Revised by AV, 3-Jul-2022.) |
| Ref | Expression |
|---|---|
| inveq.b | ⊢ 𝐵 = (Base‘𝐶) |
| inveq.n | ⊢ 𝑁 = (Inv‘𝐶) |
| inveq.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| inveq.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| inveq.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| inveq | ⊢ (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inveq.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | eqid 2730 | . . 3 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 3 | inveq.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝐶 ∈ Cat) |
| 5 | inveq.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝑌 ∈ 𝐵) |
| 7 | inveq.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝑋 ∈ 𝐵) |
| 9 | inveq.n | . . . . . . . 8 ⊢ 𝑁 = (Inv‘𝐶) | |
| 10 | 1, 9, 3, 7, 5, 2 | isinv 17729 | . . . . . . 7 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) | |
| 12 | 10, 11 | biimtrdi 253 | . . . . . 6 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)) |
| 13 | 12 | com12 32 | . . . . 5 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → (𝜑 → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾) → (𝜑 → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)) |
| 15 | 14 | impcom 407 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) |
| 16 | 1, 9, 3, 7, 5, 2 | isinv 17729 | . . . . . 6 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐾 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐾 ∧ 𝐾(𝑌(Sect‘𝐶)𝑋)𝐹))) |
| 17 | simpl 482 | . . . . . 6 ⊢ ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐾 ∧ 𝐾(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾) | |
| 18 | 16, 17 | biimtrdi 253 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐾 → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾)) |
| 19 | 18 | adantld 490 | . . . 4 ⊢ (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾)) |
| 20 | 19 | imp 406 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾) |
| 21 | 1, 2, 4, 6, 8, 15, 20 | sectcan 17724 | . 2 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝐺 = 𝐾) |
| 22 | 21 | ex 412 | 1 ⊢ (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Catccat 17632 Sectcsect 17713 Invcinv 17714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-cat 17636 df-cid 17637 df-sect 17716 df-inv 17717 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |