![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inveq | Structured version Visualization version GIF version |
Description: If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.) (Revised by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
inveq.b | ⊢ 𝐵 = (Base‘𝐶) |
inveq.n | ⊢ 𝑁 = (Inv‘𝐶) |
inveq.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
inveq.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
inveq.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
inveq | ⊢ (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inveq.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | eqid 2740 | . . 3 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
3 | inveq.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝐶 ∈ Cat) |
5 | inveq.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝑌 ∈ 𝐵) |
7 | inveq.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝑋 ∈ 𝐵) |
9 | inveq.n | . . . . . . . 8 ⊢ 𝑁 = (Inv‘𝐶) | |
10 | 1, 9, 3, 7, 5, 2 | isinv 17821 | . . . . . . 7 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))) |
11 | simpr 484 | . . . . . . 7 ⊢ ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) | |
12 | 10, 11 | biimtrdi 253 | . . . . . 6 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)) |
13 | 12 | com12 32 | . . . . 5 ⊢ (𝐹(𝑋𝑁𝑌)𝐺 → (𝜑 → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾) → (𝜑 → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)) |
15 | 14 | impcom 407 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) |
16 | 1, 9, 3, 7, 5, 2 | isinv 17821 | . . . . . 6 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐾 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐾 ∧ 𝐾(𝑌(Sect‘𝐶)𝑋)𝐹))) |
17 | simpl 482 | . . . . . 6 ⊢ ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐾 ∧ 𝐾(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾) | |
18 | 16, 17 | biimtrdi 253 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐾 → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾)) |
19 | 18 | adantld 490 | . . . 4 ⊢ (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾)) |
20 | 19 | imp 406 | . . 3 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾) |
21 | 1, 2, 4, 6, 8, 15, 20 | sectcan 17816 | . 2 ⊢ ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾)) → 𝐺 = 𝐾) |
22 | 21 | ex 412 | 1 ⊢ (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺 ∧ 𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Catccat 17722 Sectcsect 17805 Invcinv 17806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-cat 17726 df-cid 17727 df-sect 17808 df-inv 17809 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |