MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inveq Structured version   Visualization version   GIF version

Theorem inveq 17822
Description: If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
inveq.b 𝐵 = (Base‘𝐶)
inveq.n 𝑁 = (Inv‘𝐶)
inveq.c (𝜑𝐶 ∈ Cat)
inveq.x (𝜑𝑋𝐵)
inveq.y (𝜑𝑌𝐵)
Assertion
Ref Expression
inveq (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾))

Proof of Theorem inveq
StepHypRef Expression
1 inveq.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2735 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
3 inveq.c . . . 4 (𝜑𝐶 ∈ Cat)
43adantr 480 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝐶 ∈ Cat)
5 inveq.y . . . 4 (𝜑𝑌𝐵)
65adantr 480 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝑌𝐵)
7 inveq.x . . . 4 (𝜑𝑋𝐵)
87adantr 480 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝑋𝐵)
9 inveq.n . . . . . . . 8 𝑁 = (Inv‘𝐶)
101, 9, 3, 7, 5, 2isinv 17808 . . . . . . 7 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
11 simpr 484 . . . . . . 7 ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)
1210, 11biimtrdi 253 . . . . . 6 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))
1312com12 32 . . . . 5 (𝐹(𝑋𝑁𝑌)𝐺 → (𝜑𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))
1413adantr 480 . . . 4 ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → (𝜑𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))
1514impcom 407 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)
161, 9, 3, 7, 5, 2isinv 17808 . . . . . 6 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐾 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐾𝐾(𝑌(Sect‘𝐶)𝑋)𝐹)))
17 simpl 482 . . . . . 6 ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐾𝐾(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾)
1816, 17biimtrdi 253 . . . . 5 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐾𝐹(𝑋(Sect‘𝐶)𝑌)𝐾))
1918adantld 490 . . . 4 (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾))
2019imp 406 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾)
211, 2, 4, 6, 8, 15, 20sectcan 17803 . 2 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝐺 = 𝐾)
2221ex 412 1 (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  Catccat 17709  Sectcsect 17792  Invcinv 17793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-cat 17713  df-cid 17714  df-sect 17795  df-inv 17796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator