MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inveq Structured version   Visualization version   GIF version

Theorem inveq 17279
Description: If there are two inverses of a morphism, these inverses are equal. Corollary 3.11 of [Adamek] p. 28. (Contributed by AV, 10-Apr-2020.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
inveq.b 𝐵 = (Base‘𝐶)
inveq.n 𝑁 = (Inv‘𝐶)
inveq.c (𝜑𝐶 ∈ Cat)
inveq.x (𝜑𝑋𝐵)
inveq.y (𝜑𝑌𝐵)
Assertion
Ref Expression
inveq (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾))

Proof of Theorem inveq
StepHypRef Expression
1 inveq.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2737 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
3 inveq.c . . . 4 (𝜑𝐶 ∈ Cat)
43adantr 484 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝐶 ∈ Cat)
5 inveq.y . . . 4 (𝜑𝑌𝐵)
65adantr 484 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝑌𝐵)
7 inveq.x . . . 4 (𝜑𝑋𝐵)
87adantr 484 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝑋𝐵)
9 inveq.n . . . . . . . 8 𝑁 = (Inv‘𝐶)
101, 9, 3, 7, 5, 2isinv 17265 . . . . . . 7 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
11 simpr 488 . . . . . . 7 ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)
1210, 11syl6bi 256 . . . . . 6 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))
1312com12 32 . . . . 5 (𝐹(𝑋𝑁𝑌)𝐺 → (𝜑𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))
1413adantr 484 . . . 4 ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → (𝜑𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))
1514impcom 411 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)
161, 9, 3, 7, 5, 2isinv 17265 . . . . . 6 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐾 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐾𝐾(𝑌(Sect‘𝐶)𝑋)𝐹)))
17 simpl 486 . . . . . 6 ((𝐹(𝑋(Sect‘𝐶)𝑌)𝐾𝐾(𝑌(Sect‘𝐶)𝑋)𝐹) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾)
1816, 17syl6bi 256 . . . . 5 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐾𝐹(𝑋(Sect‘𝐶)𝑌)𝐾))
1918adantld 494 . . . 4 (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾))
2019imp 410 . . 3 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝐾)
211, 2, 4, 6, 8, 15, 20sectcan 17260 . 2 ((𝜑 ∧ (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾)) → 𝐺 = 𝐾)
2221ex 416 1 (𝜑 → ((𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑁𝑌)𝐾) → 𝐺 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110   class class class wbr 5053  cfv 6380  (class class class)co 7213  Basecbs 16760  Catccat 17167  Sectcsect 17249  Invcinv 17250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-cat 17171  df-cid 17172  df-sect 17252  df-inv 17253
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator