Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1dim Structured version   Visualization version   GIF version

Theorem dia1dim 38189
Description: Two expressions for the 1-dimensional subspaces of partial vector space A (when 𝐹 is a nonzero vector i.e. non-identity translation). Remark after Lemma L in [Crawley] p. 120 line 21. (Contributed by NM, 15-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dia1dim.h 𝐻 = (LHyp‘𝐾)
dia1dim.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia1dim.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia1dim.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dia1dim.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia1dim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)})
Distinct variable groups:   𝐸,𝑠   𝑔,𝑠,𝐹   𝑔,𝐻,𝑠   𝑔,𝐾,𝑠   𝑅,𝑔,𝑠   𝑇,𝑔,𝑠   𝑔,𝑊,𝑠
Allowed substitution hints:   𝐸(𝑔)   𝐼(𝑔,𝑠)

Proof of Theorem dia1dim
StepHypRef Expression
1 simpl 485 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 eqid 2819 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 dia1dim.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dia1dim.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dia1dim.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
62, 3, 4, 5trlcl 37292 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
7 eqid 2819 . . . 4 (le‘𝐾) = (le‘𝐾)
87, 3, 4, 5trlle 37312 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹)(le‘𝐾)𝑊)
9 dia1dim.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
102, 7, 3, 4, 5, 9diaval 38160 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑅𝐹)(le‘𝐾)𝑊)) → (𝐼‘(𝑅𝐹)) = {𝑔𝑇 ∣ (𝑅𝑔)(le‘𝐾)(𝑅𝐹)})
111, 6, 8, 10syl12anc 834 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔𝑇 ∣ (𝑅𝑔)(le‘𝐾)(𝑅𝐹)})
12 dia1dim.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
137, 3, 4, 5, 12dva1dim 38113 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)} = {𝑔𝑇 ∣ (𝑅𝑔)(le‘𝐾)(𝑅𝐹)})
1411, 13eqtr4d 2857 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  {cab 2797  wrex 3137  {crab 3140   class class class wbr 5057  cfv 6348  Basecbs 16475  lecple 16564  HLchlt 36478  LHypclh 37112  LTrncltrn 37229  trLctrl 37286  TEndoctendo 37880  DIsoAcdia 38156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-riotaBAD 36081
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-undef 7931  df-map 8400  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-llines 36626  df-lplanes 36627  df-lvols 36628  df-lines 36629  df-psubsp 36631  df-pmap 36632  df-padd 36924  df-lhyp 37116  df-laut 37117  df-ldil 37232  df-ltrn 37233  df-trl 37287  df-tendo 37883  df-disoa 38157
This theorem is referenced by:  dia1dim2  38190  dib1dim  38293
  Copyright terms: Public domain W3C validator