![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia1dim | Structured version Visualization version GIF version |
Description: Two expressions for the 1-dimensional subspaces of partial vector space A (when πΉ is a nonzero vector i.e. non-identity translation). Remark after Lemma L in [Crawley] p. 120 line 21. (Contributed by NM, 15-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
Ref | Expression |
---|---|
dia1dim.h | β’ π» = (LHypβπΎ) |
dia1dim.t | β’ π = ((LTrnβπΎ)βπ) |
dia1dim.r | β’ π = ((trLβπΎ)βπ) |
dia1dim.e | β’ πΈ = ((TEndoβπΎ)βπ) |
dia1dim.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
Ref | Expression |
---|---|
dia1dim | β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πΌβ(π βπΉ)) = {π β£ βπ β πΈ π = (π βπΉ)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πΎ β HL β§ π β π»)) | |
2 | eqid 2732 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | dia1dim.h | . . . 4 β’ π» = (LHypβπΎ) | |
4 | dia1dim.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
5 | dia1dim.r | . . . 4 β’ π = ((trLβπΎ)βπ) | |
6 | 2, 3, 4, 5 | trlcl 39023 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (π βπΉ) β (BaseβπΎ)) |
7 | eqid 2732 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
8 | 7, 3, 4, 5 | trlle 39043 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (π βπΉ)(leβπΎ)π) |
9 | dia1dim.i | . . . 4 β’ πΌ = ((DIsoAβπΎ)βπ) | |
10 | 2, 7, 3, 4, 5, 9 | diaval 39891 | . . 3 β’ (((πΎ β HL β§ π β π») β§ ((π βπΉ) β (BaseβπΎ) β§ (π βπΉ)(leβπΎ)π)) β (πΌβ(π βπΉ)) = {π β π β£ (π βπ)(leβπΎ)(π βπΉ)}) |
11 | 1, 6, 8, 10 | syl12anc 835 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πΌβ(π βπΉ)) = {π β π β£ (π βπ)(leβπΎ)(π βπΉ)}) |
12 | dia1dim.e | . . 3 β’ πΈ = ((TEndoβπΎ)βπ) | |
13 | 7, 3, 4, 5, 12 | dva1dim 39844 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β {π β£ βπ β πΈ π = (π βπΉ)} = {π β π β£ (π βπ)(leβπΎ)(π βπΉ)}) |
14 | 11, 13 | eqtr4d 2775 | 1 β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (πΌβ(π βπΉ)) = {π β£ βπ β πΈ π = (π βπΉ)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {cab 2709 βwrex 3070 {crab 3432 class class class wbr 5147 βcfv 6540 Basecbs 17140 lecple 17200 HLchlt 38208 LHypclh 38843 LTrncltrn 38960 trLctrl 39017 TEndoctendo 39611 DIsoAcdia 39887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-riotaBAD 37811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-undef 8254 df-map 8818 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 df-lplanes 38358 df-lvols 38359 df-lines 38360 df-psubsp 38362 df-pmap 38363 df-padd 38655 df-lhyp 38847 df-laut 38848 df-ldil 38963 df-ltrn 38964 df-trl 39018 df-tendo 39614 df-disoa 39888 |
This theorem is referenced by: dia1dim2 39921 dib1dim 40024 |
Copyright terms: Public domain | W3C validator |