|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dia1dim | Structured version Visualization version GIF version | ||
| Description: Two expressions for the 1-dimensional subspaces of partial vector space A (when 𝐹 is a nonzero vector i.e. non-identity translation). Remark after Lemma L in [Crawley] p. 120 line 21. (Contributed by NM, 15-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) | 
| Ref | Expression | 
|---|---|
| dia1dim.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| dia1dim.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| dia1dim.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| dia1dim.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | 
| dia1dim.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | 
| Ref | Expression | 
|---|---|
| dia1dim | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | eqid 2736 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | dia1dim.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dia1dim.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | dia1dim.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 6 | 2, 3, 4, 5 | trlcl 40167 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) | 
| 7 | eqid 2736 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | 7, 3, 4, 5 | trlle 40187 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹)(le‘𝐾)𝑊) | 
| 9 | dia1dim.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 10 | 2, 7, 3, 4, 5, 9 | diaval 41035 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘𝐹)(le‘𝐾)𝑊)) → (𝐼‘(𝑅‘𝐹)) = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔)(le‘𝐾)(𝑅‘𝐹)}) | 
| 11 | 1, 6, 8, 10 | syl12anc 836 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔)(le‘𝐾)(𝑅‘𝐹)}) | 
| 12 | dia1dim.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 13 | 7, 3, 4, 5, 12 | dva1dim 40988 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔)(le‘𝐾)(𝑅‘𝐹)}) | 
| 14 | 11, 13 | eqtr4d 2779 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 ∃wrex 3069 {crab 3435 class class class wbr 5142 ‘cfv 6560 Basecbs 17248 lecple 17305 HLchlt 39352 LHypclh 39987 LTrncltrn 40104 trLctrl 40161 TEndoctendo 40755 DIsoAcdia 41031 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-riotaBAD 38955 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-undef 8299 df-map 8869 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-llines 39501 df-lplanes 39502 df-lvols 39503 df-lines 39504 df-psubsp 39506 df-pmap 39507 df-padd 39799 df-lhyp 39991 df-laut 39992 df-ldil 40107 df-ltrn 40108 df-trl 40162 df-tendo 40758 df-disoa 41032 | 
| This theorem is referenced by: dia1dim2 41065 dib1dim 41168 | 
| Copyright terms: Public domain | W3C validator |