![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia1dim | Structured version Visualization version GIF version |
Description: Two expressions for the 1-dimensional subspaces of partial vector space A (when 𝐹 is a nonzero vector i.e. non-identity translation). Remark after Lemma L in [Crawley] p. 120 line 21. (Contributed by NM, 15-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.) |
Ref | Expression |
---|---|
dia1dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia1dim.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dia1dim.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dia1dim.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dia1dim.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dia1dim | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | eqid 2726 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | dia1dim.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dia1dim.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | dia1dim.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
6 | 2, 3, 4, 5 | trlcl 39876 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
7 | eqid 2726 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | 7, 3, 4, 5 | trlle 39896 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹)(le‘𝐾)𝑊) |
9 | dia1dim.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
10 | 2, 7, 3, 4, 5, 9 | diaval 40744 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑅‘𝐹)(le‘𝐾)𝑊)) → (𝐼‘(𝑅‘𝐹)) = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔)(le‘𝐾)(𝑅‘𝐹)}) |
11 | 1, 6, 8, 10 | syl12anc 835 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔)(le‘𝐾)(𝑅‘𝐹)}) |
12 | dia1dim.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
13 | 7, 3, 4, 5, 12 | dva1dim 40697 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔)(le‘𝐾)(𝑅‘𝐹)}) |
14 | 11, 13 | eqtr4d 2769 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐼‘(𝑅‘𝐹)) = {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 ∃wrex 3060 {crab 3419 class class class wbr 5145 ‘cfv 6546 Basecbs 17208 lecple 17268 HLchlt 39061 LHypclh 39696 LTrncltrn 39813 trLctrl 39870 TEndoctendo 40464 DIsoAcdia 40740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-riotaBAD 38664 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-undef 8280 df-map 8849 df-proset 18315 df-poset 18333 df-plt 18350 df-lub 18366 df-glb 18367 df-join 18368 df-meet 18369 df-p0 18445 df-p1 18446 df-lat 18452 df-clat 18519 df-oposet 38887 df-ol 38889 df-oml 38890 df-covers 38977 df-ats 38978 df-atl 39009 df-cvlat 39033 df-hlat 39062 df-llines 39210 df-lplanes 39211 df-lvols 39212 df-lines 39213 df-psubsp 39215 df-pmap 39216 df-padd 39508 df-lhyp 39700 df-laut 39701 df-ldil 39816 df-ltrn 39817 df-trl 39871 df-tendo 40467 df-disoa 40741 |
This theorem is referenced by: dia1dim2 40774 dib1dim 40877 |
Copyright terms: Public domain | W3C validator |