Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1N Structured version   Visualization version   GIF version

Theorem dia1N 39370
Description: The value of the partial isomorphism A at the fiducial co-atom is the set of all translations i.e. the entire vector space. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1.h 𝐻 = (LHyp‘𝐾)
dia1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia1.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia1N ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) = 𝑇)

Proof of Theorem dia1N
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 eqid 2737 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 dia1.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3lhpbase 38315 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
54adantl 483 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ (Base‘𝐾))
6 hllat 37679 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
7 eqid 2737 . . . . 5 (le‘𝐾) = (le‘𝐾)
82, 7latref 18257 . . . 4 ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊(le‘𝐾)𝑊)
96, 4, 8syl2an 597 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊(le‘𝐾)𝑊)
10 dia1.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 eqid 2737 . . . 4 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
12 dia1.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
132, 7, 3, 10, 11, 12diaval 39349 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊(le‘𝐾)𝑊)) → (𝐼𝑊) = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊})
141, 5, 9, 13syl12anc 835 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊})
157, 3, 10, 11trlle 38501 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊)
1615ralrimiva 3140 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑓𝑇 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊)
17 rabid2 3433 . . 3 (𝑇 = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊} ↔ ∀𝑓𝑇 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊)
1816, 17sylibr 233 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊})
1914, 18eqtr4d 2780 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  wral 3062  {crab 3404   class class class wbr 5097  cfv 6484  Basecbs 17010  lecple 17067  Latclat 18247  HLchlt 37666  LHypclh 38301  LTrncltrn 38418  trLctrl 38475  DIsoAcdia 39345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-map 8693  df-proset 18111  df-poset 18129  df-plt 18146  df-lub 18162  df-glb 18163  df-join 18164  df-meet 18165  df-p0 18241  df-p1 18242  df-lat 18248  df-oposet 37492  df-ol 37494  df-oml 37495  df-covers 37582  df-ats 37583  df-atl 37614  df-cvlat 37638  df-hlat 37667  df-lhyp 38305  df-laut 38306  df-ldil 38421  df-ltrn 38422  df-trl 38476  df-disoa 39346
This theorem is referenced by:  dia1elN  39371
  Copyright terms: Public domain W3C validator