Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1N Structured version   Visualization version   GIF version

Theorem dia1N 40754
Description: The value of the partial isomorphism A at the fiducial co-atom is the set of all translations i.e. the entire vector space. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1.h 𝐻 = (LHyp‘𝐾)
dia1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia1.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia1N ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) = 𝑇)

Proof of Theorem dia1N
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 eqid 2726 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 dia1.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3lhpbase 39699 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
54adantl 480 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ (Base‘𝐾))
6 hllat 39063 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
7 eqid 2726 . . . . 5 (le‘𝐾) = (le‘𝐾)
82, 7latref 18468 . . . 4 ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊(le‘𝐾)𝑊)
96, 4, 8syl2an 594 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊(le‘𝐾)𝑊)
10 dia1.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 eqid 2726 . . . 4 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
12 dia1.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
132, 7, 3, 10, 11, 12diaval 40733 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊(le‘𝐾)𝑊)) → (𝐼𝑊) = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊})
141, 5, 9, 13syl12anc 835 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊})
157, 3, 10, 11trlle 39885 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊)
1615ralrimiva 3136 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑓𝑇 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊)
17 rabid2 3453 . . 3 (𝑇 = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊} ↔ ∀𝑓𝑇 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊)
1816, 17sylibr 233 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊})
1914, 18eqtr4d 2769 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  {crab 3419   class class class wbr 5155  cfv 6556  Basecbs 17215  lecple 17275  Latclat 18458  HLchlt 39050  LHypclh 39685  LTrncltrn 39802  trLctrl 39859  DIsoAcdia 40729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-map 8859  df-proset 18322  df-poset 18340  df-plt 18357  df-lub 18373  df-glb 18374  df-join 18375  df-meet 18376  df-p0 18452  df-p1 18453  df-lat 18459  df-oposet 38876  df-ol 38878  df-oml 38879  df-covers 38966  df-ats 38967  df-atl 38998  df-cvlat 39022  df-hlat 39051  df-lhyp 39689  df-laut 39690  df-ldil 39805  df-ltrn 39806  df-trl 39860  df-disoa 40730
This theorem is referenced by:  dia1elN  40755
  Copyright terms: Public domain W3C validator