Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia1N | Structured version Visualization version GIF version |
Description: The value of the partial isomorphism A at the fiducial co-atom is the set of all translations i.e. the entire vector space. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dia1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dia1.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dia1N | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | dia1.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 2, 3 | lhpbase 37749 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
5 | 4 | adantl 485 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ (Base‘𝐾)) |
6 | hllat 37114 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
7 | eqid 2737 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | 2, 7 | latref 17947 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊(le‘𝐾)𝑊) |
9 | 6, 4, 8 | syl2an 599 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊(le‘𝐾)𝑊) |
10 | dia1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | eqid 2737 | . . . 4 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
12 | dia1.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
13 | 2, 7, 3, 10, 11, 12 | diaval 38783 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊(le‘𝐾)𝑊)) → (𝐼‘𝑊) = {𝑓 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊}) |
14 | 1, 5, 9, 13 | syl12anc 837 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) = {𝑓 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊}) |
15 | 7, 3, 10, 11 | trlle 37935 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊) |
16 | 15 | ralrimiva 3105 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊) |
17 | rabid2 3293 | . . 3 ⊢ (𝑇 = {𝑓 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊} ↔ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊) | |
18 | 16, 17 | sylibr 237 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 = {𝑓 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊}) |
19 | 14, 18 | eqtr4d 2780 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 class class class wbr 5053 ‘cfv 6380 Basecbs 16760 lecple 16809 Latclat 17937 HLchlt 37101 LHypclh 37735 LTrncltrn 37852 trLctrl 37909 DIsoAcdia 38779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-lhyp 37739 df-laut 37740 df-ldil 37855 df-ltrn 37856 df-trl 37910 df-disoa 38780 |
This theorem is referenced by: dia1elN 38805 |
Copyright terms: Public domain | W3C validator |