Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia1N | Structured version Visualization version GIF version |
Description: The value of the partial isomorphism A at the fiducial co-atom is the set of all translations i.e. the entire vector space. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dia1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dia1.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dia1N | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | dia1.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 2, 3 | lhpbase 38315 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
5 | 4 | adantl 483 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ (Base‘𝐾)) |
6 | hllat 37679 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
7 | eqid 2737 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | 2, 7 | latref 18257 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊(le‘𝐾)𝑊) |
9 | 6, 4, 8 | syl2an 597 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊(le‘𝐾)𝑊) |
10 | dia1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | eqid 2737 | . . . 4 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
12 | dia1.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
13 | 2, 7, 3, 10, 11, 12 | diaval 39349 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊(le‘𝐾)𝑊)) → (𝐼‘𝑊) = {𝑓 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊}) |
14 | 1, 5, 9, 13 | syl12anc 835 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) = {𝑓 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊}) |
15 | 7, 3, 10, 11 | trlle 38501 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊) |
16 | 15 | ralrimiva 3140 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊) |
17 | rabid2 3433 | . . 3 ⊢ (𝑇 = {𝑓 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊} ↔ ∀𝑓 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊) | |
18 | 16, 17 | sylibr 233 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 = {𝑓 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊}) |
19 | 14, 18 | eqtr4d 2780 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘𝑊) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 {crab 3404 class class class wbr 5097 ‘cfv 6484 Basecbs 17010 lecple 17067 Latclat 18247 HLchlt 37666 LHypclh 38301 LTrncltrn 38418 trLctrl 38475 DIsoAcdia 39345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-map 8693 df-proset 18111 df-poset 18129 df-plt 18146 df-lub 18162 df-glb 18163 df-join 18164 df-meet 18165 df-p0 18241 df-p1 18242 df-lat 18248 df-oposet 37492 df-ol 37494 df-oml 37495 df-covers 37582 df-ats 37583 df-atl 37614 df-cvlat 37638 df-hlat 37667 df-lhyp 38305 df-laut 38306 df-ldil 38421 df-ltrn 38422 df-trl 38476 df-disoa 39346 |
This theorem is referenced by: dia1elN 39371 |
Copyright terms: Public domain | W3C validator |