Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1N Structured version   Visualization version   GIF version

Theorem dia1N 41049
Description: The value of the partial isomorphism A at the fiducial co-atom is the set of all translations i.e. the entire vector space. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1.h 𝐻 = (LHyp‘𝐾)
dia1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia1.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia1N ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) = 𝑇)

Proof of Theorem dia1N
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 dia1.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3lhpbase 39994 . . . 4 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
54adantl 481 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ (Base‘𝐾))
6 hllat 39359 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
7 eqid 2729 . . . . 5 (le‘𝐾) = (le‘𝐾)
82, 7latref 18334 . . . 4 ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊(le‘𝐾)𝑊)
96, 4, 8syl2an 596 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊(le‘𝐾)𝑊)
10 dia1.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 eqid 2729 . . . 4 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
12 dia1.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
132, 7, 3, 10, 11, 12diaval 41028 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊(le‘𝐾)𝑊)) → (𝐼𝑊) = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊})
141, 5, 9, 13syl12anc 836 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊})
157, 3, 10, 11trlle 40180 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊)
1615ralrimiva 3121 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑓𝑇 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊)
17 rabid2 3425 . . 3 (𝑇 = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊} ↔ ∀𝑓𝑇 (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊)
1816, 17sylibr 234 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 = {𝑓𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾)𝑊})
1914, 18eqtr4d 2767 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑊) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3392   class class class wbr 5088  cfv 6476  Basecbs 17107  lecple 17155  Latclat 18324  HLchlt 39346  LHypclh 39980  LTrncltrn 40097  trLctrl 40154  DIsoAcdia 41024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4940  df-br 5089  df-opab 5151  df-mpt 5170  df-id 5508  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7297  df-ov 7343  df-oprab 7344  df-mpo 7345  df-map 8746  df-proset 18187  df-poset 18206  df-plt 18221  df-lub 18237  df-glb 18238  df-join 18239  df-meet 18240  df-p0 18316  df-p1 18317  df-lat 18325  df-oposet 39172  df-ol 39174  df-oml 39175  df-covers 39262  df-ats 39263  df-atl 39294  df-cvlat 39318  df-hlat 39347  df-lhyp 39984  df-laut 39985  df-ldil 40100  df-ltrn 40101  df-trl 40155  df-disoa 41025
This theorem is referenced by:  dia1elN  41050
  Copyright terms: Public domain W3C validator