Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihwN | Structured version Visualization version GIF version |
Description: Value of isomorphism H at the fiducial hyperplane 𝑊. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihw.b | ⊢ 𝐵 = (Base‘𝐾) |
dihw.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihw.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihw.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dihw.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihw.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
dihwN | ⊢ (𝜑 → (𝐼‘𝑊) = (𝑇 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihw.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | 1 | simprd 496 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
3 | dihw.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
4 | dihw.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 3, 4 | lhpbase 38012 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
7 | 1 | simpld 495 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
8 | 7 | hllatd 37378 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
9 | eqid 2738 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
10 | 3, 9 | latref 18159 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐵) → 𝑊(le‘𝐾)𝑊) |
11 | 8, 6, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑊(le‘𝐾)𝑊) |
12 | 6, 11 | jca 512 | . . 3 ⊢ (𝜑 → (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) |
13 | dihw.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
14 | eqid 2738 | . . . 4 ⊢ ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) | |
15 | 3, 9, 4, 13, 14 | dihvalb 39251 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (𝐼‘𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊)) |
16 | 1, 12, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐼‘𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊)) |
17 | dihw.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
18 | dihw.o | . . . 4 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
19 | eqid 2738 | . . . 4 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
20 | 3, 9, 4, 17, 18, 19, 14 | dibval2 39158 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 })) |
21 | 1, 12, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 })) |
22 | eqid 2738 | . . . . . 6 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
23 | 3, 9, 4, 17, 22, 19 | diaval 39046 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
24 | 1, 12, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
25 | 9, 4, 17, 22 | trlle 38198 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
26 | 1, 25 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
27 | 26 | ralrimiva 3103 | . . . . 5 ⊢ (𝜑 → ∀𝑔 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
28 | rabid2 3314 | . . . . 5 ⊢ (𝑇 = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊} ↔ ∀𝑔 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) | |
29 | 27, 28 | sylibr 233 | . . . 4 ⊢ (𝜑 → 𝑇 = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
30 | 24, 29 | eqtr4d 2781 | . . 3 ⊢ (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = 𝑇) |
31 | 30 | xpeq1d 5618 | . 2 ⊢ (𝜑 → ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }) = (𝑇 × { 0 })) |
32 | 16, 21, 31 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐼‘𝑊) = (𝑇 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 {csn 4561 class class class wbr 5074 ↦ cmpt 5157 I cid 5488 × cxp 5587 ↾ cres 5591 ‘cfv 6433 Basecbs 16912 lecple 16969 Latclat 18149 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 trLctrl 38172 DIsoAcdia 39042 DIsoBcdib 39152 DIsoHcdih 39242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-disoa 39043 df-dib 39153 df-dih 39243 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |