| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihwN | Structured version Visualization version GIF version | ||
| Description: Value of isomorphism H at the fiducial hyperplane 𝑊. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dihw.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihw.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihw.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dihw.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dihw.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihw.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| dihwN | ⊢ (𝜑 → (𝐼‘𝑊) = (𝑇 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihw.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | 1 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
| 3 | dihw.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | dihw.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 3, 4 | lhpbase 40096 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| 7 | 1 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 8 | 7 | hllatd 39462 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 9 | eqid 2731 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 10 | 3, 9 | latref 18347 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐵) → 𝑊(le‘𝐾)𝑊) |
| 11 | 8, 6, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑊(le‘𝐾)𝑊) |
| 12 | 6, 11 | jca 511 | . . 3 ⊢ (𝜑 → (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) |
| 13 | dihw.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 14 | eqid 2731 | . . . 4 ⊢ ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) | |
| 15 | 3, 9, 4, 13, 14 | dihvalb 41335 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (𝐼‘𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊)) |
| 16 | 1, 12, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐼‘𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊)) |
| 17 | dihw.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 18 | dihw.o | . . . 4 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 19 | eqid 2731 | . . . 4 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 20 | 3, 9, 4, 17, 18, 19, 14 | dibval2 41242 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 })) |
| 21 | 1, 12, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 })) |
| 22 | eqid 2731 | . . . . . 6 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 23 | 3, 9, 4, 17, 22, 19 | diaval 41130 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
| 24 | 1, 12, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
| 25 | 9, 4, 17, 22 | trlle 40282 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
| 26 | 1, 25 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
| 27 | 26 | ralrimiva 3124 | . . . . 5 ⊢ (𝜑 → ∀𝑔 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
| 28 | rabid2 3428 | . . . . 5 ⊢ (𝑇 = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊} ↔ ∀𝑔 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) | |
| 29 | 27, 28 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝑇 = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
| 30 | 24, 29 | eqtr4d 2769 | . . 3 ⊢ (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = 𝑇) |
| 31 | 30 | xpeq1d 5643 | . 2 ⊢ (𝜑 → ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }) = (𝑇 × { 0 })) |
| 32 | 16, 21, 31 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝐼‘𝑊) = (𝑇 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 {csn 4573 class class class wbr 5089 ↦ cmpt 5170 I cid 5508 × cxp 5612 ↾ cres 5616 ‘cfv 6481 Basecbs 17120 lecple 17168 Latclat 18337 HLchlt 39448 LHypclh 40082 LTrncltrn 40199 trLctrl 40256 DIsoAcdia 41126 DIsoBcdib 41236 DIsoHcdih 41326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-oposet 39274 df-ol 39276 df-oml 39277 df-covers 39364 df-ats 39365 df-atl 39396 df-cvlat 39420 df-hlat 39449 df-lhyp 40086 df-laut 40087 df-ldil 40202 df-ltrn 40203 df-trl 40257 df-disoa 41127 df-dib 41237 df-dih 41327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |