Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihwN Structured version   Visualization version   GIF version

Theorem dihwN 40650
Description: Value of isomorphism H at the fiducial hyperplane 𝑊. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihw.b 𝐵 = (Base‘𝐾)
dihw.h 𝐻 = (LHyp‘𝐾)
dihw.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihw.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dihw.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihw.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
dihwN (𝜑 → (𝐼𝑊) = (𝑇 × { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   0 (𝑓)

Proof of Theorem dihwN
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dihw.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simprd 495 . . . . 5 (𝜑𝑊𝐻)
3 dihw.b . . . . . 6 𝐵 = (Base‘𝐾)
4 dihw.h . . . . . 6 𝐻 = (LHyp‘𝐾)
53, 4lhpbase 39359 . . . . 5 (𝑊𝐻𝑊𝐵)
62, 5syl 17 . . . 4 (𝜑𝑊𝐵)
71simpld 494 . . . . . 6 (𝜑𝐾 ∈ HL)
87hllatd 38724 . . . . 5 (𝜑𝐾 ∈ Lat)
9 eqid 2724 . . . . . 6 (le‘𝐾) = (le‘𝐾)
103, 9latref 18396 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑊𝐵) → 𝑊(le‘𝐾)𝑊)
118, 6, 10syl2anc 583 . . . 4 (𝜑𝑊(le‘𝐾)𝑊)
126, 11jca 511 . . 3 (𝜑 → (𝑊𝐵𝑊(le‘𝐾)𝑊))
13 dihw.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
14 eqid 2724 . . . 4 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
153, 9, 4, 13, 14dihvalb 40598 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊(le‘𝐾)𝑊)) → (𝐼𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊))
161, 12, 15syl2anc 583 . 2 (𝜑 → (𝐼𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊))
17 dihw.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
18 dihw.o . . . 4 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
19 eqid 2724 . . . 4 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
203, 9, 4, 17, 18, 19, 14dibval2 40505 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊(le‘𝐾)𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }))
211, 12, 20syl2anc 583 . 2 (𝜑 → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }))
22 eqid 2724 . . . . . 6 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
233, 9, 4, 17, 22, 19diaval 40393 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊(le‘𝐾)𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊})
241, 12, 23syl2anc 583 . . . 4 (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊})
259, 4, 17, 22trlle 39545 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
261, 25sylan 579 . . . . . 6 ((𝜑𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
2726ralrimiva 3138 . . . . 5 (𝜑 → ∀𝑔𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
28 rabid2 3456 . . . . 5 (𝑇 = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊} ↔ ∀𝑔𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
2927, 28sylibr 233 . . . 4 (𝜑𝑇 = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊})
3024, 29eqtr4d 2767 . . 3 (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = 𝑇)
3130xpeq1d 5695 . 2 (𝜑 → ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }) = (𝑇 × { 0 }))
3216, 21, 313eqtrd 2768 1 (𝜑 → (𝐼𝑊) = (𝑇 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  {crab 3424  {csn 4620   class class class wbr 5138  cmpt 5221   I cid 5563   × cxp 5664  cres 5668  cfv 6533  Basecbs 17143  lecple 17203  Latclat 18386  HLchlt 38710  LHypclh 39345  LTrncltrn 39462  trLctrl 39519  DIsoAcdia 40389  DIsoBcdib 40499  DIsoHcdih 40589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-map 8818  df-proset 18250  df-poset 18268  df-plt 18285  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-p0 18380  df-p1 18381  df-lat 18387  df-oposet 38536  df-ol 38538  df-oml 38539  df-covers 38626  df-ats 38627  df-atl 38658  df-cvlat 38682  df-hlat 38711  df-lhyp 39349  df-laut 39350  df-ldil 39465  df-ltrn 39466  df-trl 39520  df-disoa 40390  df-dib 40500  df-dih 40590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator