Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihwN Structured version   Visualization version   GIF version

Theorem dihwN 41232
Description: Value of isomorphism H at the fiducial hyperplane 𝑊. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihw.b 𝐵 = (Base‘𝐾)
dihw.h 𝐻 = (LHyp‘𝐾)
dihw.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihw.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dihw.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihw.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
dihwN (𝜑 → (𝐼𝑊) = (𝑇 × { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   0 (𝑓)

Proof of Theorem dihwN
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dihw.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simprd 495 . . . . 5 (𝜑𝑊𝐻)
3 dihw.b . . . . . 6 𝐵 = (Base‘𝐾)
4 dihw.h . . . . . 6 𝐻 = (LHyp‘𝐾)
53, 4lhpbase 39941 . . . . 5 (𝑊𝐻𝑊𝐵)
62, 5syl 17 . . . 4 (𝜑𝑊𝐵)
71simpld 494 . . . . . 6 (𝜑𝐾 ∈ HL)
87hllatd 39306 . . . . 5 (𝜑𝐾 ∈ Lat)
9 eqid 2734 . . . . . 6 (le‘𝐾) = (le‘𝐾)
103, 9latref 18460 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑊𝐵) → 𝑊(le‘𝐾)𝑊)
118, 6, 10syl2anc 584 . . . 4 (𝜑𝑊(le‘𝐾)𝑊)
126, 11jca 511 . . 3 (𝜑 → (𝑊𝐵𝑊(le‘𝐾)𝑊))
13 dihw.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
14 eqid 2734 . . . 4 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
153, 9, 4, 13, 14dihvalb 41180 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊(le‘𝐾)𝑊)) → (𝐼𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊))
161, 12, 15syl2anc 584 . 2 (𝜑 → (𝐼𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊))
17 dihw.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
18 dihw.o . . . 4 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
19 eqid 2734 . . . 4 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
203, 9, 4, 17, 18, 19, 14dibval2 41087 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊(le‘𝐾)𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }))
211, 12, 20syl2anc 584 . 2 (𝜑 → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }))
22 eqid 2734 . . . . . 6 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
233, 9, 4, 17, 22, 19diaval 40975 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊(le‘𝐾)𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊})
241, 12, 23syl2anc 584 . . . 4 (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊})
259, 4, 17, 22trlle 40127 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
261, 25sylan 580 . . . . . 6 ((𝜑𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
2726ralrimiva 3133 . . . . 5 (𝜑 → ∀𝑔𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
28 rabid2 3454 . . . . 5 (𝑇 = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊} ↔ ∀𝑔𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
2927, 28sylibr 234 . . . 4 (𝜑𝑇 = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊})
3024, 29eqtr4d 2772 . . 3 (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = 𝑇)
3130xpeq1d 5696 . 2 (𝜑 → ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }) = (𝑇 × { 0 }))
3216, 21, 313eqtrd 2773 1 (𝜑 → (𝐼𝑊) = (𝑇 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  {crab 3420  {csn 4608   class class class wbr 5125  cmpt 5207   I cid 5559   × cxp 5665  cres 5669  cfv 6542  Basecbs 17230  lecple 17284  Latclat 18450  HLchlt 39292  LHypclh 39927  LTrncltrn 40044  trLctrl 40101  DIsoAcdia 40971  DIsoBcdib 41081  DIsoHcdih 41171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-map 8851  df-proset 18315  df-poset 18334  df-plt 18349  df-lub 18365  df-glb 18366  df-join 18367  df-meet 18368  df-p0 18444  df-p1 18445  df-lat 18451  df-oposet 39118  df-ol 39120  df-oml 39121  df-covers 39208  df-ats 39209  df-atl 39240  df-cvlat 39264  df-hlat 39293  df-lhyp 39931  df-laut 39932  df-ldil 40047  df-ltrn 40048  df-trl 40102  df-disoa 40972  df-dib 41082  df-dih 41172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator