Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihwN Structured version   Visualization version   GIF version

Theorem dihwN 40650
Description: Value of isomorphism H at the fiducial hyperplane π‘Š. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihw.b 𝐡 = (Baseβ€˜πΎ)
dihw.h 𝐻 = (LHypβ€˜πΎ)
dihw.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dihw.o 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
dihw.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
dihw.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
Assertion
Ref Expression
dihwN (πœ‘ β†’ (πΌβ€˜π‘Š) = (𝑇 Γ— { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑓,π‘Š
Allowed substitution hints:   πœ‘(𝑓)   𝐡(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   0 (𝑓)

Proof of Theorem dihwN
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dihw.k . . 3 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
21simprd 495 . . . . 5 (πœ‘ β†’ π‘Š ∈ 𝐻)
3 dihw.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
4 dihw.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
53, 4lhpbase 39359 . . . . 5 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
62, 5syl 17 . . . 4 (πœ‘ β†’ π‘Š ∈ 𝐡)
71simpld 494 . . . . . 6 (πœ‘ β†’ 𝐾 ∈ HL)
87hllatd 38724 . . . . 5 (πœ‘ β†’ 𝐾 ∈ Lat)
9 eqid 2724 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
103, 9latref 18396 . . . . 5 ((𝐾 ∈ Lat ∧ π‘Š ∈ 𝐡) β†’ π‘Š(leβ€˜πΎ)π‘Š)
118, 6, 10syl2anc 583 . . . 4 (πœ‘ β†’ π‘Š(leβ€˜πΎ)π‘Š)
126, 11jca 511 . . 3 (πœ‘ β†’ (π‘Š ∈ 𝐡 ∧ π‘Š(leβ€˜πΎ)π‘Š))
13 dihw.i . . . 4 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
14 eqid 2724 . . . 4 ((DIsoBβ€˜πΎ)β€˜π‘Š) = ((DIsoBβ€˜πΎ)β€˜π‘Š)
153, 9, 4, 13, 14dihvalb 40598 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘Š ∈ 𝐡 ∧ π‘Š(leβ€˜πΎ)π‘Š)) β†’ (πΌβ€˜π‘Š) = (((DIsoBβ€˜πΎ)β€˜π‘Š)β€˜π‘Š))
161, 12, 15syl2anc 583 . 2 (πœ‘ β†’ (πΌβ€˜π‘Š) = (((DIsoBβ€˜πΎ)β€˜π‘Š)β€˜π‘Š))
17 dihw.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
18 dihw.o . . . 4 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
19 eqid 2724 . . . 4 ((DIsoAβ€˜πΎ)β€˜π‘Š) = ((DIsoAβ€˜πΎ)β€˜π‘Š)
203, 9, 4, 17, 18, 19, 14dibval2 40505 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘Š ∈ 𝐡 ∧ π‘Š(leβ€˜πΎ)π‘Š)) β†’ (((DIsoBβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) Γ— { 0 }))
211, 12, 20syl2anc 583 . 2 (πœ‘ β†’ (((DIsoBβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) Γ— { 0 }))
22 eqid 2724 . . . . . 6 ((trLβ€˜πΎ)β€˜π‘Š) = ((trLβ€˜πΎ)β€˜π‘Š)
233, 9, 4, 17, 22, 19diaval 40393 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘Š ∈ 𝐡 ∧ π‘Š(leβ€˜πΎ)π‘Š)) β†’ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) = {𝑔 ∈ 𝑇 ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š})
241, 12, 23syl2anc 583 . . . 4 (πœ‘ β†’ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) = {𝑔 ∈ 𝑇 ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š})
259, 4, 17, 22trlle 39545 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑔 ∈ 𝑇) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š)
261, 25sylan 579 . . . . . 6 ((πœ‘ ∧ 𝑔 ∈ 𝑇) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š)
2726ralrimiva 3138 . . . . 5 (πœ‘ β†’ βˆ€π‘” ∈ 𝑇 (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š)
28 rabid2 3456 . . . . 5 (𝑇 = {𝑔 ∈ 𝑇 ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š} ↔ βˆ€π‘” ∈ 𝑇 (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š)
2927, 28sylibr 233 . . . 4 (πœ‘ β†’ 𝑇 = {𝑔 ∈ 𝑇 ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š})
3024, 29eqtr4d 2767 . . 3 (πœ‘ β†’ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) = 𝑇)
3130xpeq1d 5695 . 2 (πœ‘ β†’ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) Γ— { 0 }) = (𝑇 Γ— { 0 }))
3216, 21, 313eqtrd 2768 1 (πœ‘ β†’ (πΌβ€˜π‘Š) = (𝑇 Γ— { 0 }))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  {crab 3424  {csn 4620   class class class wbr 5138   ↦ cmpt 5221   I cid 5563   Γ— cxp 5664   β†Ύ cres 5668  β€˜cfv 6533  Basecbs 17143  lecple 17203  Latclat 18386  HLchlt 38710  LHypclh 39345  LTrncltrn 39462  trLctrl 39519  DIsoAcdia 40389  DIsoBcdib 40499  DIsoHcdih 40589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-map 8818  df-proset 18250  df-poset 18268  df-plt 18285  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-p0 18380  df-p1 18381  df-lat 18387  df-oposet 38536  df-ol 38538  df-oml 38539  df-covers 38626  df-ats 38627  df-atl 38658  df-cvlat 38682  df-hlat 38711  df-lhyp 39349  df-laut 39350  df-ldil 39465  df-ltrn 39466  df-trl 39520  df-disoa 40390  df-dib 40500  df-dih 40590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator