![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihwN | Structured version Visualization version GIF version |
Description: Value of isomorphism H at the fiducial hyperplane 𝑊. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihw.b | ⊢ 𝐵 = (Base‘𝐾) |
dihw.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihw.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihw.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dihw.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihw.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
dihwN | ⊢ (𝜑 → (𝐼‘𝑊) = (𝑇 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihw.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | 1 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
3 | dihw.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
4 | dihw.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 3, 4 | lhpbase 39955 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
7 | 1 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
8 | 7 | hllatd 39320 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
9 | eqid 2740 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
10 | 3, 9 | latref 18511 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐵) → 𝑊(le‘𝐾)𝑊) |
11 | 8, 6, 10 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝑊(le‘𝐾)𝑊) |
12 | 6, 11 | jca 511 | . . 3 ⊢ (𝜑 → (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) |
13 | dihw.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
14 | eqid 2740 | . . . 4 ⊢ ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) | |
15 | 3, 9, 4, 13, 14 | dihvalb 41194 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (𝐼‘𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊)) |
16 | 1, 12, 15 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐼‘𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊)) |
17 | dihw.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
18 | dihw.o | . . . 4 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
19 | eqid 2740 | . . . 4 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
20 | 3, 9, 4, 17, 18, 19, 14 | dibval2 41101 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 })) |
21 | 1, 12, 20 | syl2anc 583 | . 2 ⊢ (𝜑 → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 })) |
22 | eqid 2740 | . . . . . 6 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
23 | 3, 9, 4, 17, 22, 19 | diaval 40989 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
24 | 1, 12, 23 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
25 | 9, 4, 17, 22 | trlle 40141 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
26 | 1, 25 | sylan 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
27 | 26 | ralrimiva 3152 | . . . . 5 ⊢ (𝜑 → ∀𝑔 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
28 | rabid2 3478 | . . . . 5 ⊢ (𝑇 = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊} ↔ ∀𝑔 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) | |
29 | 27, 28 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝑇 = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
30 | 24, 29 | eqtr4d 2783 | . . 3 ⊢ (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = 𝑇) |
31 | 30 | xpeq1d 5729 | . 2 ⊢ (𝜑 → ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }) = (𝑇 × { 0 })) |
32 | 16, 21, 31 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (𝐼‘𝑊) = (𝑇 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 {csn 4648 class class class wbr 5166 ↦ cmpt 5249 I cid 5592 × cxp 5698 ↾ cres 5702 ‘cfv 6573 Basecbs 17258 lecple 17318 Latclat 18501 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 trLctrl 40115 DIsoAcdia 40985 DIsoBcdib 41095 DIsoHcdih 41185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-disoa 40986 df-dib 41096 df-dih 41186 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |