Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihwN Structured version   Visualization version   GIF version

Theorem dihwN 40699
Description: Value of isomorphism H at the fiducial hyperplane π‘Š. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihw.b 𝐡 = (Baseβ€˜πΎ)
dihw.h 𝐻 = (LHypβ€˜πΎ)
dihw.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dihw.o 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
dihw.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
dihw.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
Assertion
Ref Expression
dihwN (πœ‘ β†’ (πΌβ€˜π‘Š) = (𝑇 Γ— { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑓,π‘Š
Allowed substitution hints:   πœ‘(𝑓)   𝐡(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   0 (𝑓)

Proof of Theorem dihwN
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dihw.k . . 3 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
21simprd 495 . . . . 5 (πœ‘ β†’ π‘Š ∈ 𝐻)
3 dihw.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
4 dihw.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
53, 4lhpbase 39408 . . . . 5 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
62, 5syl 17 . . . 4 (πœ‘ β†’ π‘Š ∈ 𝐡)
71simpld 494 . . . . . 6 (πœ‘ β†’ 𝐾 ∈ HL)
87hllatd 38773 . . . . 5 (πœ‘ β†’ 𝐾 ∈ Lat)
9 eqid 2727 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
103, 9latref 18424 . . . . 5 ((𝐾 ∈ Lat ∧ π‘Š ∈ 𝐡) β†’ π‘Š(leβ€˜πΎ)π‘Š)
118, 6, 10syl2anc 583 . . . 4 (πœ‘ β†’ π‘Š(leβ€˜πΎ)π‘Š)
126, 11jca 511 . . 3 (πœ‘ β†’ (π‘Š ∈ 𝐡 ∧ π‘Š(leβ€˜πΎ)π‘Š))
13 dihw.i . . . 4 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
14 eqid 2727 . . . 4 ((DIsoBβ€˜πΎ)β€˜π‘Š) = ((DIsoBβ€˜πΎ)β€˜π‘Š)
153, 9, 4, 13, 14dihvalb 40647 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘Š ∈ 𝐡 ∧ π‘Š(leβ€˜πΎ)π‘Š)) β†’ (πΌβ€˜π‘Š) = (((DIsoBβ€˜πΎ)β€˜π‘Š)β€˜π‘Š))
161, 12, 15syl2anc 583 . 2 (πœ‘ β†’ (πΌβ€˜π‘Š) = (((DIsoBβ€˜πΎ)β€˜π‘Š)β€˜π‘Š))
17 dihw.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
18 dihw.o . . . 4 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
19 eqid 2727 . . . 4 ((DIsoAβ€˜πΎ)β€˜π‘Š) = ((DIsoAβ€˜πΎ)β€˜π‘Š)
203, 9, 4, 17, 18, 19, 14dibval2 40554 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘Š ∈ 𝐡 ∧ π‘Š(leβ€˜πΎ)π‘Š)) β†’ (((DIsoBβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) Γ— { 0 }))
211, 12, 20syl2anc 583 . 2 (πœ‘ β†’ (((DIsoBβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) Γ— { 0 }))
22 eqid 2727 . . . . . 6 ((trLβ€˜πΎ)β€˜π‘Š) = ((trLβ€˜πΎ)β€˜π‘Š)
233, 9, 4, 17, 22, 19diaval 40442 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘Š ∈ 𝐡 ∧ π‘Š(leβ€˜πΎ)π‘Š)) β†’ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) = {𝑔 ∈ 𝑇 ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š})
241, 12, 23syl2anc 583 . . . 4 (πœ‘ β†’ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) = {𝑔 ∈ 𝑇 ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š})
259, 4, 17, 22trlle 39594 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑔 ∈ 𝑇) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š)
261, 25sylan 579 . . . . . 6 ((πœ‘ ∧ 𝑔 ∈ 𝑇) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š)
2726ralrimiva 3141 . . . . 5 (πœ‘ β†’ βˆ€π‘” ∈ 𝑇 (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š)
28 rabid2 3459 . . . . 5 (𝑇 = {𝑔 ∈ 𝑇 ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š} ↔ βˆ€π‘” ∈ 𝑇 (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š)
2927, 28sylibr 233 . . . 4 (πœ‘ β†’ 𝑇 = {𝑔 ∈ 𝑇 ∣ (((trLβ€˜πΎ)β€˜π‘Š)β€˜π‘”)(leβ€˜πΎ)π‘Š})
3024, 29eqtr4d 2770 . . 3 (πœ‘ β†’ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) = 𝑇)
3130xpeq1d 5701 . 2 (πœ‘ β†’ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘Š) Γ— { 0 }) = (𝑇 Γ— { 0 }))
3216, 21, 313eqtrd 2771 1 (πœ‘ β†’ (πΌβ€˜π‘Š) = (𝑇 Γ— { 0 }))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  βˆ€wral 3056  {crab 3427  {csn 4624   class class class wbr 5142   ↦ cmpt 5225   I cid 5569   Γ— cxp 5670   β†Ύ cres 5674  β€˜cfv 6542  Basecbs 17171  lecple 17231  Latclat 18414  HLchlt 38759  LHypclh 39394  LTrncltrn 39511  trLctrl 39568  DIsoAcdia 40438  DIsoBcdib 40548  DIsoHcdih 40638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-map 8838  df-proset 18278  df-poset 18296  df-plt 18313  df-lub 18329  df-glb 18330  df-join 18331  df-meet 18332  df-p0 18408  df-p1 18409  df-lat 18415  df-oposet 38585  df-ol 38587  df-oml 38588  df-covers 38675  df-ats 38676  df-atl 38707  df-cvlat 38731  df-hlat 38760  df-lhyp 39398  df-laut 39399  df-ldil 39514  df-ltrn 39515  df-trl 39569  df-disoa 40439  df-dib 40549  df-dih 40639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator