| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihwN | Structured version Visualization version GIF version | ||
| Description: Value of isomorphism H at the fiducial hyperplane 𝑊. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dihw.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihw.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihw.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dihw.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dihw.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihw.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| dihwN | ⊢ (𝜑 → (𝐼‘𝑊) = (𝑇 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihw.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | 1 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
| 3 | dihw.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | dihw.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 3, 4 | lhpbase 39997 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| 7 | 1 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 8 | 7 | hllatd 39363 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 9 | eqid 2729 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 10 | 3, 9 | latref 18347 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐵) → 𝑊(le‘𝐾)𝑊) |
| 11 | 8, 6, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑊(le‘𝐾)𝑊) |
| 12 | 6, 11 | jca 511 | . . 3 ⊢ (𝜑 → (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) |
| 13 | dihw.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 14 | eqid 2729 | . . . 4 ⊢ ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) | |
| 15 | 3, 9, 4, 13, 14 | dihvalb 41236 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (𝐼‘𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊)) |
| 16 | 1, 12, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐼‘𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊)) |
| 17 | dihw.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 18 | dihw.o | . . . 4 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 19 | eqid 2729 | . . . 4 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 20 | 3, 9, 4, 17, 18, 19, 14 | dibval2 41143 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 })) |
| 21 | 1, 12, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 })) |
| 22 | eqid 2729 | . . . . . 6 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 23 | 3, 9, 4, 17, 22, 19 | diaval 41031 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
| 24 | 1, 12, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
| 25 | 9, 4, 17, 22 | trlle 40183 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
| 26 | 1, 25 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
| 27 | 26 | ralrimiva 3121 | . . . . 5 ⊢ (𝜑 → ∀𝑔 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
| 28 | rabid2 3428 | . . . . 5 ⊢ (𝑇 = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊} ↔ ∀𝑔 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) | |
| 29 | 27, 28 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝑇 = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
| 30 | 24, 29 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = 𝑇) |
| 31 | 30 | xpeq1d 5648 | . 2 ⊢ (𝜑 → ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }) = (𝑇 × { 0 })) |
| 32 | 16, 21, 31 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝐼‘𝑊) = (𝑇 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 {csn 4577 class class class wbr 5092 ↦ cmpt 5173 I cid 5513 × cxp 5617 ↾ cres 5621 ‘cfv 6482 Basecbs 17120 lecple 17168 Latclat 18337 HLchlt 39349 LHypclh 39983 LTrncltrn 40100 trLctrl 40157 DIsoAcdia 41027 DIsoBcdib 41137 DIsoHcdih 41227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-oposet 39175 df-ol 39177 df-oml 39178 df-covers 39265 df-ats 39266 df-atl 39297 df-cvlat 39321 df-hlat 39350 df-lhyp 39987 df-laut 39988 df-ldil 40103 df-ltrn 40104 df-trl 40158 df-disoa 41028 df-dib 41138 df-dih 41228 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |