| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihwN | Structured version Visualization version GIF version | ||
| Description: Value of isomorphism H at the fiducial hyperplane 𝑊. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dihw.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihw.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihw.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dihw.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dihw.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihw.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| dihwN | ⊢ (𝜑 → (𝐼‘𝑊) = (𝑇 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihw.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | 1 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
| 3 | dihw.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | dihw.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 3, 4 | lhpbase 40022 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| 7 | 1 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 8 | 7 | hllatd 39387 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
| 9 | eqid 2736 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 10 | 3, 9 | latref 18456 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐵) → 𝑊(le‘𝐾)𝑊) |
| 11 | 8, 6, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑊(le‘𝐾)𝑊) |
| 12 | 6, 11 | jca 511 | . . 3 ⊢ (𝜑 → (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) |
| 13 | dihw.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 14 | eqid 2736 | . . . 4 ⊢ ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) | |
| 15 | 3, 9, 4, 13, 14 | dihvalb 41261 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (𝐼‘𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊)) |
| 16 | 1, 12, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐼‘𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊)) |
| 17 | dihw.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 18 | dihw.o | . . . 4 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 19 | eqid 2736 | . . . 4 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 20 | 3, 9, 4, 17, 18, 19, 14 | dibval2 41168 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 })) |
| 21 | 1, 12, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 })) |
| 22 | eqid 2736 | . . . . . 6 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 23 | 3, 9, 4, 17, 22, 19 | diaval 41056 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑊 ∈ 𝐵 ∧ 𝑊(le‘𝐾)𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
| 24 | 1, 12, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
| 25 | 9, 4, 17, 22 | trlle 40208 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
| 26 | 1, 25 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
| 27 | 26 | ralrimiva 3133 | . . . . 5 ⊢ (𝜑 → ∀𝑔 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) |
| 28 | rabid2 3454 | . . . . 5 ⊢ (𝑇 = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊} ↔ ∀𝑔 ∈ 𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊) | |
| 29 | 27, 28 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝑇 = {𝑔 ∈ 𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊}) |
| 30 | 24, 29 | eqtr4d 2774 | . . 3 ⊢ (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = 𝑇) |
| 31 | 30 | xpeq1d 5688 | . 2 ⊢ (𝜑 → ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }) = (𝑇 × { 0 })) |
| 32 | 16, 21, 31 | 3eqtrd 2775 | 1 ⊢ (𝜑 → (𝐼‘𝑊) = (𝑇 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 {csn 4606 class class class wbr 5124 ↦ cmpt 5206 I cid 5552 × cxp 5657 ↾ cres 5661 ‘cfv 6536 Basecbs 17233 lecple 17283 Latclat 18446 HLchlt 39373 LHypclh 40008 LTrncltrn 40125 trLctrl 40182 DIsoAcdia 41052 DIsoBcdib 41162 DIsoHcdih 41252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-lhyp 40012 df-laut 40013 df-ldil 40128 df-ltrn 40129 df-trl 40183 df-disoa 41053 df-dib 41163 df-dih 41253 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |