Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihwN Structured version   Visualization version   GIF version

Theorem dihwN 41276
Description: Value of isomorphism H at the fiducial hyperplane 𝑊. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihw.b 𝐵 = (Base‘𝐾)
dihw.h 𝐻 = (LHyp‘𝐾)
dihw.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihw.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dihw.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihw.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
dihwN (𝜑 → (𝐼𝑊) = (𝑇 × { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   0 (𝑓)

Proof of Theorem dihwN
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dihw.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simprd 495 . . . . 5 (𝜑𝑊𝐻)
3 dihw.b . . . . . 6 𝐵 = (Base‘𝐾)
4 dihw.h . . . . . 6 𝐻 = (LHyp‘𝐾)
53, 4lhpbase 39985 . . . . 5 (𝑊𝐻𝑊𝐵)
62, 5syl 17 . . . 4 (𝜑𝑊𝐵)
71simpld 494 . . . . . 6 (𝜑𝐾 ∈ HL)
87hllatd 39350 . . . . 5 (𝜑𝐾 ∈ Lat)
9 eqid 2729 . . . . . 6 (le‘𝐾) = (le‘𝐾)
103, 9latref 18382 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑊𝐵) → 𝑊(le‘𝐾)𝑊)
118, 6, 10syl2anc 584 . . . 4 (𝜑𝑊(le‘𝐾)𝑊)
126, 11jca 511 . . 3 (𝜑 → (𝑊𝐵𝑊(le‘𝐾)𝑊))
13 dihw.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
14 eqid 2729 . . . 4 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
153, 9, 4, 13, 14dihvalb 41224 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊(le‘𝐾)𝑊)) → (𝐼𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊))
161, 12, 15syl2anc 584 . 2 (𝜑 → (𝐼𝑊) = (((DIsoB‘𝐾)‘𝑊)‘𝑊))
17 dihw.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
18 dihw.o . . . 4 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
19 eqid 2729 . . . 4 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
203, 9, 4, 17, 18, 19, 14dibval2 41131 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊(le‘𝐾)𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }))
211, 12, 20syl2anc 584 . 2 (𝜑 → (((DIsoB‘𝐾)‘𝑊)‘𝑊) = ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }))
22 eqid 2729 . . . . . 6 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
233, 9, 4, 17, 22, 19diaval 41019 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊(le‘𝐾)𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊})
241, 12, 23syl2anc 584 . . . 4 (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊})
259, 4, 17, 22trlle 40171 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
261, 25sylan 580 . . . . . 6 ((𝜑𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
2726ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑔𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
28 rabid2 3436 . . . . 5 (𝑇 = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊} ↔ ∀𝑔𝑇 (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊)
2927, 28sylibr 234 . . . 4 (𝜑𝑇 = {𝑔𝑇 ∣ (((trL‘𝐾)‘𝑊)‘𝑔)(le‘𝐾)𝑊})
3024, 29eqtr4d 2767 . . 3 (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘𝑊) = 𝑇)
3130xpeq1d 5660 . 2 (𝜑 → ((((DIsoA‘𝐾)‘𝑊)‘𝑊) × { 0 }) = (𝑇 × { 0 }))
3216, 21, 313eqtrd 2768 1 (𝜑 → (𝐼𝑊) = (𝑇 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  {csn 4585   class class class wbr 5102  cmpt 5183   I cid 5525   × cxp 5629  cres 5633  cfv 6499  Basecbs 17155  lecple 17203  Latclat 18372  HLchlt 39336  LHypclh 39971  LTrncltrn 40088  trLctrl 40145  DIsoAcdia 41015  DIsoBcdib 41125  DIsoHcdih 41215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-lhyp 39975  df-laut 39976  df-ldil 40091  df-ltrn 40092  df-trl 40146  df-disoa 41016  df-dib 41126  df-dih 41216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator