Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemm10N Structured version   Visualization version   GIF version

Theorem cdlemm10N 39059
Description: The image of the map 𝐺 is the entire one-dimensional subspace (𝐼𝑉). Remark after Lemma M of [Crawley] p. 121 line 23. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemm10.l = (le‘𝐾)
cdlemm10.j = (join‘𝐾)
cdlemm10.a 𝐴 = (Atoms‘𝐾)
cdlemm10.h 𝐻 = (LHyp‘𝐾)
cdlemm10.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemm10.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemm10.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
cdlemm10.c 𝐶 = {𝑟𝐴 ∣ (𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊)}
cdlemm10.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑠)
cdlemm10.g 𝐺 = (𝑞𝐶 ↦ (𝑓𝑇 (𝑓𝑃) = 𝑞))
Assertion
Ref Expression
cdlemm10N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ran 𝐺 = (𝐼𝑉))
Distinct variable groups:   𝑓,𝑟,𝑠,   ,𝑟   𝐴,𝑓,𝑟,𝑠   𝑠,𝑞,𝐶   𝐺,𝑠   𝑓,𝐻,𝑠   𝑓,𝐾,𝑠   𝑓,𝑞,𝑃,𝑟,𝑠   𝑅,𝑓,𝑠   𝑇,𝑓,𝑞,𝑠   𝑓,𝑉,𝑟,𝑠   𝑓,𝑊,𝑟,𝑠
Allowed substitution hints:   𝐴(𝑞)   𝐶(𝑓,𝑟)   𝑅(𝑟,𝑞)   𝑇(𝑟)   𝐹(𝑓,𝑠,𝑟,𝑞)   𝐺(𝑓,𝑟,𝑞)   𝐻(𝑟,𝑞)   𝐼(𝑓,𝑠,𝑟,𝑞)   (𝑓,𝑠,𝑞)   𝐾(𝑟,𝑞)   (𝑞)   𝑉(𝑞)   𝑊(𝑞)

Proof of Theorem cdlemm10N
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 riotaex 7216 . . . . 5 (𝑓𝑇 (𝑓𝑃) = 𝑞) ∈ V
2 cdlemm10.g . . . . 5 𝐺 = (𝑞𝐶 ↦ (𝑓𝑇 (𝑓𝑃) = 𝑞))
31, 2fnmpti 6560 . . . 4 𝐺 Fn 𝐶
4 fvelrnb 6812 . . . 4 (𝐺 Fn 𝐶 → (𝑔 ∈ ran 𝐺 ↔ ∃𝑠𝐶 (𝐺𝑠) = 𝑔))
53, 4ax-mp 5 . . 3 (𝑔 ∈ ran 𝐺 ↔ ∃𝑠𝐶 (𝐺𝑠) = 𝑔)
6 eqeq2 2750 . . . . . . . . . . . 12 (𝑞 = 𝑠 → ((𝑓𝑃) = 𝑞 ↔ (𝑓𝑃) = 𝑠))
76riotabidv 7214 . . . . . . . . . . 11 (𝑞 = 𝑠 → (𝑓𝑇 (𝑓𝑃) = 𝑞) = (𝑓𝑇 (𝑓𝑃) = 𝑠))
8 riotaex 7216 . . . . . . . . . . 11 (𝑓𝑇 (𝑓𝑃) = 𝑠) ∈ V
97, 2, 8fvmpt 6857 . . . . . . . . . 10 (𝑠𝐶 → (𝐺𝑠) = (𝑓𝑇 (𝑓𝑃) = 𝑠))
10 cdlemm10.f . . . . . . . . . 10 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑠)
119, 10eqtr4di 2797 . . . . . . . . 9 (𝑠𝐶 → (𝐺𝑠) = 𝐹)
1211adantl 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑠𝐶) → (𝐺𝑠) = 𝐹)
1312eqeq1d 2740 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑠𝐶) → ((𝐺𝑠) = 𝑔𝐹 = 𝑔))
1413rexbidva 3224 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔 ↔ ∃𝑠𝐶 𝐹 = 𝑔))
15 simpl1 1189 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simprl 767 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑔𝑇)
17 simpl2l 1224 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑃𝐴)
18 cdlemm10.l . . . . . . . . . . . 12 = (le‘𝐾)
19 cdlemm10.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
20 cdlemm10.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
21 cdlemm10.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
2218, 19, 20, 21ltrnat 38081 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑃𝐴) → (𝑔𝑃) ∈ 𝐴)
2315, 16, 17, 22syl3anc 1369 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) ∈ 𝐴)
24 eqid 2738 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
25 simpl1l 1222 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝐾 ∈ HL)
2625hllatd 37305 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝐾 ∈ Lat)
2724, 19atbase 37230 . . . . . . . . . . . . . 14 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2817, 27syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑃 ∈ (Base‘𝐾))
2924, 20, 21ltrncl 38066 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑃 ∈ (Base‘𝐾)) → (𝑔𝑃) ∈ (Base‘𝐾))
3015, 16, 28, 29syl3anc 1369 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) ∈ (Base‘𝐾))
31 cdlemm10.j . . . . . . . . . . . . . 14 = (join‘𝐾)
3224, 31latjcl 18072 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑔𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝑔𝑃)) ∈ (Base‘𝐾))
3326, 28, 30, 32syl3anc 1369 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑔𝑃)) ∈ (Base‘𝐾))
34 simpl3l 1226 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑉𝐴)
3524, 31, 19hlatjcl 37308 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑉𝐴) → (𝑃 𝑉) ∈ (Base‘𝐾))
3625, 17, 34, 35syl3anc 1369 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3724, 18, 31latlej2 18082 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑔𝑃) ∈ (Base‘𝐾)) → (𝑔𝑃) (𝑃 (𝑔𝑃)))
3826, 28, 30, 37syl3anc 1369 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) (𝑃 (𝑔𝑃)))
39 simpl2 1190 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
40 cdlemm10.r . . . . . . . . . . . . . . 15 𝑅 = ((trL‘𝐾)‘𝑊)
4118, 31, 19, 20, 21, 40trljat1 38107 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝑔)) = (𝑃 (𝑔𝑃)))
4215, 16, 39, 41syl3anc 1369 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑅𝑔)) = (𝑃 (𝑔𝑃)))
43 simprr 769 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑅𝑔) 𝑉)
4424, 20, 21, 40trlcl 38105 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → (𝑅𝑔) ∈ (Base‘𝐾))
4515, 16, 44syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑅𝑔) ∈ (Base‘𝐾))
4624, 19atbase 37230 . . . . . . . . . . . . . . . 16 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
4734, 46syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑉 ∈ (Base‘𝐾))
4824, 18, 31latjlej2 18087 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ ((𝑅𝑔) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → ((𝑅𝑔) 𝑉 → (𝑃 (𝑅𝑔)) (𝑃 𝑉)))
4926, 45, 47, 28, 48syl13anc 1370 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ((𝑅𝑔) 𝑉 → (𝑃 (𝑅𝑔)) (𝑃 𝑉)))
5043, 49mpd 15 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑅𝑔)) (𝑃 𝑉))
5142, 50eqbrtrrd 5094 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑔𝑃)) (𝑃 𝑉))
5224, 18, 26, 30, 33, 36, 38, 51lattrd 18079 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) (𝑃 𝑉))
5318, 19, 20, 21ltrnel 38080 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑔𝑃) ∈ 𝐴 ∧ ¬ (𝑔𝑃) 𝑊))
5453simprd 495 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ (𝑔𝑃) 𝑊)
5515, 16, 39, 54syl3anc 1369 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ¬ (𝑔𝑃) 𝑊)
5652, 55jca 511 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ((𝑔𝑃) (𝑃 𝑉) ∧ ¬ (𝑔𝑃) 𝑊))
57 breq1 5073 . . . . . . . . . . . 12 (𝑟 = (𝑔𝑃) → (𝑟 (𝑃 𝑉) ↔ (𝑔𝑃) (𝑃 𝑉)))
58 breq1 5073 . . . . . . . . . . . . 13 (𝑟 = (𝑔𝑃) → (𝑟 𝑊 ↔ (𝑔𝑃) 𝑊))
5958notbid 317 . . . . . . . . . . . 12 (𝑟 = (𝑔𝑃) → (¬ 𝑟 𝑊 ↔ ¬ (𝑔𝑃) 𝑊))
6057, 59anbi12d 630 . . . . . . . . . . 11 (𝑟 = (𝑔𝑃) → ((𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊) ↔ ((𝑔𝑃) (𝑃 𝑉) ∧ ¬ (𝑔𝑃) 𝑊)))
61 cdlemm10.c . . . . . . . . . . 11 𝐶 = {𝑟𝐴 ∣ (𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊)}
6260, 61elrab2 3620 . . . . . . . . . 10 ((𝑔𝑃) ∈ 𝐶 ↔ ((𝑔𝑃) ∈ 𝐴 ∧ ((𝑔𝑃) (𝑃 𝑉) ∧ ¬ (𝑔𝑃) 𝑊)))
6323, 56, 62sylanbrc 582 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) ∈ 𝐶)
6418, 19, 20, 21cdlemeiota 38526 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑔𝑇) → 𝑔 = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
6515, 39, 16, 64syl3anc 1369 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑔 = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
6665eqcomd 2744 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)) = 𝑔)
67 eqeq2 2750 . . . . . . . . . . . . 13 (𝑠 = (𝑔𝑃) → ((𝑓𝑃) = 𝑠 ↔ (𝑓𝑃) = (𝑔𝑃)))
6867riotabidv 7214 . . . . . . . . . . . 12 (𝑠 = (𝑔𝑃) → (𝑓𝑇 (𝑓𝑃) = 𝑠) = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
6910, 68syl5eq 2791 . . . . . . . . . . 11 (𝑠 = (𝑔𝑃) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
7069eqeq1d 2740 . . . . . . . . . 10 (𝑠 = (𝑔𝑃) → (𝐹 = 𝑔 ↔ (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)) = 𝑔))
7170rspcev 3552 . . . . . . . . 9 (((𝑔𝑃) ∈ 𝐶 ∧ (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)) = 𝑔) → ∃𝑠𝐶 𝐹 = 𝑔)
7263, 66, 71syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ∃𝑠𝐶 𝐹 = 𝑔)
7372ex 412 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑔𝑇 ∧ (𝑅𝑔) 𝑉) → ∃𝑠𝐶 𝐹 = 𝑔))
74 breq1 5073 . . . . . . . . . . . . 13 (𝑟 = 𝑠 → (𝑟 (𝑃 𝑉) ↔ 𝑠 (𝑃 𝑉)))
75 breq1 5073 . . . . . . . . . . . . . 14 (𝑟 = 𝑠 → (𝑟 𝑊𝑠 𝑊))
7675notbid 317 . . . . . . . . . . . . 13 (𝑟 = 𝑠 → (¬ 𝑟 𝑊 ↔ ¬ 𝑠 𝑊))
7774, 76anbi12d 630 . . . . . . . . . . . 12 (𝑟 = 𝑠 → ((𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊) ↔ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)))
7877, 61elrab2 3620 . . . . . . . . . . 11 (𝑠𝐶 ↔ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)))
79 simpl1 1189 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
80 simpl2l 1224 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑃𝐴)
81 simpl2r 1225 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ¬ 𝑃 𝑊)
82 simprl 767 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑠𝐴)
83 simprrr 778 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ¬ 𝑠 𝑊)
8418, 19, 20, 21, 10ltrniotacl 38520 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐹𝑇)
8518, 19, 20, 21, 10ltrniotaval 38522 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝐹𝑃) = 𝑠)
8684, 85jca 511 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠))
8779, 80, 81, 82, 83, 86syl122anc 1377 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠))
88 simp3l 1199 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → 𝐹𝑇)
89 simp11 1201 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
90 simp12 1202 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
91 eqid 2738 . . . . . . . . . . . . . . . . 17 (meet‘𝐾) = (meet‘𝐾)
9218, 31, 91, 19, 20, 21, 40trlval2 38104 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
9389, 88, 90, 92syl3anc 1369 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
94 simp3r 1200 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝐹𝑃) = 𝑠)
9594oveq2d 7271 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑃 (𝐹𝑃)) = (𝑃 𝑠))
9695oveq1d 7270 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) = ((𝑃 𝑠)(meet‘𝐾)𝑊))
9793, 96eqtrd 2778 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑅𝐹) = ((𝑃 𝑠)(meet‘𝐾)𝑊))
98 simpl1l 1222 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝐾 ∈ HL)
99 simpl3l 1226 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑉𝐴)
10018, 31, 19hlatlej1 37316 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑉𝐴) → 𝑃 (𝑃 𝑉))
10198, 80, 99, 100syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑃 (𝑃 𝑉))
102 simprrl 777 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑠 (𝑃 𝑉))
10398hllatd 37305 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝐾 ∈ Lat)
10480, 27syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑃 ∈ (Base‘𝐾))
10524, 19atbase 37230 . . . . . . . . . . . . . . . . . . . 20 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
106105ad2antrl 724 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑠 ∈ (Base‘𝐾))
10798, 80, 99, 35syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝑃 𝑉) ∈ (Base‘𝐾))
10824, 18, 31latjle12 18083 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑉) ∧ 𝑠 (𝑃 𝑉)) ↔ (𝑃 𝑠) (𝑃 𝑉)))
109103, 104, 106, 107, 108syl13anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 (𝑃 𝑉) ∧ 𝑠 (𝑃 𝑉)) ↔ (𝑃 𝑠) (𝑃 𝑉)))
110101, 102, 109mpbi2and 708 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝑃 𝑠) (𝑃 𝑉))
11124, 31, 19hlatjcl 37308 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑠𝐴) → (𝑃 𝑠) ∈ (Base‘𝐾))
11298, 80, 82, 111syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝑃 𝑠) ∈ (Base‘𝐾))
113 simpl1r 1223 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑊𝐻)
11424, 20lhpbase 37939 . . . . . . . . . . . . . . . . . . 19 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
115113, 114syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑊 ∈ (Base‘𝐾))
11624, 18, 91latmlem1 18102 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ ((𝑃 𝑠) ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 𝑠) (𝑃 𝑉) → ((𝑃 𝑠)(meet‘𝐾)𝑊) ((𝑃 𝑉)(meet‘𝐾)𝑊)))
117103, 112, 107, 115, 116syl13anc 1370 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑠) (𝑃 𝑉) → ((𝑃 𝑠)(meet‘𝐾)𝑊) ((𝑃 𝑉)(meet‘𝐾)𝑊)))
118110, 117mpd 15 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑠)(meet‘𝐾)𝑊) ((𝑃 𝑉)(meet‘𝐾)𝑊))
11918, 31, 91, 19, 20lhpat4N 37985 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑉)(meet‘𝐾)𝑊) = 𝑉)
120119adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑉)(meet‘𝐾)𝑊) = 𝑉)
121118, 120breqtrd 5096 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑠)(meet‘𝐾)𝑊) 𝑉)
1221213adant3 1130 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → ((𝑃 𝑠)(meet‘𝐾)𝑊) 𝑉)
12397, 122eqbrtrd 5092 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑅𝐹) 𝑉)
12488, 123jca 511 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉))
12587, 124mpd3an3 1460 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉))
12678, 125sylan2b 593 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑠𝐶) → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉))
127126ex 412 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑠𝐶 → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉)))
128 eleq1 2826 . . . . . . . . . . 11 (𝐹 = 𝑔 → (𝐹𝑇𝑔𝑇))
129 fveq2 6756 . . . . . . . . . . . 12 (𝐹 = 𝑔 → (𝑅𝐹) = (𝑅𝑔))
130129breq1d 5080 . . . . . . . . . . 11 (𝐹 = 𝑔 → ((𝑅𝐹) 𝑉 ↔ (𝑅𝑔) 𝑉))
131128, 130anbi12d 630 . . . . . . . . . 10 (𝐹 = 𝑔 → ((𝐹𝑇 ∧ (𝑅𝐹) 𝑉) ↔ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
132131biimpcd 248 . . . . . . . . 9 ((𝐹𝑇 ∧ (𝑅𝐹) 𝑉) → (𝐹 = 𝑔 → (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
133127, 132syl6 35 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑠𝐶 → (𝐹 = 𝑔 → (𝑔𝑇 ∧ (𝑅𝑔) 𝑉))))
134133rexlimdv 3211 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 𝐹 = 𝑔 → (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
13573, 134impbid 211 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑔𝑇 ∧ (𝑅𝑔) 𝑉) ↔ ∃𝑠𝐶 𝐹 = 𝑔))
13614, 135bitr4d 281 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔 ↔ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
137 fveq2 6756 . . . . . . 7 (𝑓 = 𝑔 → (𝑅𝑓) = (𝑅𝑔))
138137breq1d 5080 . . . . . 6 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑉 ↔ (𝑅𝑔) 𝑉))
139138elrab 3617 . . . . 5 (𝑔 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑉} ↔ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉))
140136, 139bitr4di 288 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔𝑔 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑉}))
141 simp1l 1195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ HL)
142 simp1r 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑊𝐻)
143 simp3l 1199 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉𝐴)
144143, 46syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 ∈ (Base‘𝐾))
145 simp3r 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 𝑊)
146 cdlemm10.i . . . . . . 7 𝐼 = ((DIsoA‘𝐾)‘𝑊)
14724, 18, 20, 21, 40, 146diaval 38973 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑉 𝑊)) → (𝐼𝑉) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑉})
148141, 142, 144, 145, 147syl22anc 835 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝐼𝑉) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑉})
149148eleq2d 2824 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑔 ∈ (𝐼𝑉) ↔ 𝑔 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑉}))
150140, 149bitr4d 281 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔𝑔 ∈ (𝐼𝑉)))
1515, 150syl5bb 282 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑔 ∈ ran 𝐺𝑔 ∈ (𝐼𝑉)))
152151eqrdv 2736 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ran 𝐺 = (𝐼𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  {crab 3067   class class class wbr 5070  cmpt 5153  ran crn 5581   Fn wfn 6413  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Latclat 18064  Atomscatm 37204  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  trLctrl 38099  DIsoAcdia 38969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-disoa 38970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator