Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemm10N Structured version   Visualization version   GIF version

Theorem cdlemm10N 41085
Description: The image of the map 𝐺 is the entire one-dimensional subspace (𝐼𝑉). Remark after Lemma M of [Crawley] p. 121 line 23. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemm10.l = (le‘𝐾)
cdlemm10.j = (join‘𝐾)
cdlemm10.a 𝐴 = (Atoms‘𝐾)
cdlemm10.h 𝐻 = (LHyp‘𝐾)
cdlemm10.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemm10.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemm10.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
cdlemm10.c 𝐶 = {𝑟𝐴 ∣ (𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊)}
cdlemm10.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑠)
cdlemm10.g 𝐺 = (𝑞𝐶 ↦ (𝑓𝑇 (𝑓𝑃) = 𝑞))
Assertion
Ref Expression
cdlemm10N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ran 𝐺 = (𝐼𝑉))
Distinct variable groups:   𝑓,𝑟,𝑠,   ,𝑟   𝐴,𝑓,𝑟,𝑠   𝑠,𝑞,𝐶   𝐺,𝑠   𝑓,𝐻,𝑠   𝑓,𝐾,𝑠   𝑓,𝑞,𝑃,𝑟,𝑠   𝑅,𝑓,𝑠   𝑇,𝑓,𝑞,𝑠   𝑓,𝑉,𝑟,𝑠   𝑓,𝑊,𝑟,𝑠
Allowed substitution hints:   𝐴(𝑞)   𝐶(𝑓,𝑟)   𝑅(𝑟,𝑞)   𝑇(𝑟)   𝐹(𝑓,𝑠,𝑟,𝑞)   𝐺(𝑓,𝑟,𝑞)   𝐻(𝑟,𝑞)   𝐼(𝑓,𝑠,𝑟,𝑞)   (𝑓,𝑠,𝑞)   𝐾(𝑟,𝑞)   (𝑞)   𝑉(𝑞)   𝑊(𝑞)

Proof of Theorem cdlemm10N
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 riotaex 7330 . . . . 5 (𝑓𝑇 (𝑓𝑃) = 𝑞) ∈ V
2 cdlemm10.g . . . . 5 𝐺 = (𝑞𝐶 ↦ (𝑓𝑇 (𝑓𝑃) = 𝑞))
31, 2fnmpti 6643 . . . 4 𝐺 Fn 𝐶
4 fvelrnb 6903 . . . 4 (𝐺 Fn 𝐶 → (𝑔 ∈ ran 𝐺 ↔ ∃𝑠𝐶 (𝐺𝑠) = 𝑔))
53, 4ax-mp 5 . . 3 (𝑔 ∈ ran 𝐺 ↔ ∃𝑠𝐶 (𝐺𝑠) = 𝑔)
6 eqeq2 2741 . . . . . . . . . . . 12 (𝑞 = 𝑠 → ((𝑓𝑃) = 𝑞 ↔ (𝑓𝑃) = 𝑠))
76riotabidv 7328 . . . . . . . . . . 11 (𝑞 = 𝑠 → (𝑓𝑇 (𝑓𝑃) = 𝑞) = (𝑓𝑇 (𝑓𝑃) = 𝑠))
8 riotaex 7330 . . . . . . . . . . 11 (𝑓𝑇 (𝑓𝑃) = 𝑠) ∈ V
97, 2, 8fvmpt 6950 . . . . . . . . . 10 (𝑠𝐶 → (𝐺𝑠) = (𝑓𝑇 (𝑓𝑃) = 𝑠))
10 cdlemm10.f . . . . . . . . . 10 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑠)
119, 10eqtr4di 2782 . . . . . . . . 9 (𝑠𝐶 → (𝐺𝑠) = 𝐹)
1211adantl 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑠𝐶) → (𝐺𝑠) = 𝐹)
1312eqeq1d 2731 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑠𝐶) → ((𝐺𝑠) = 𝑔𝐹 = 𝑔))
1413rexbidva 3155 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔 ↔ ∃𝑠𝐶 𝐹 = 𝑔))
15 simpl1 1192 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simprl 770 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑔𝑇)
17 simpl2l 1227 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑃𝐴)
18 cdlemm10.l . . . . . . . . . . . 12 = (le‘𝐾)
19 cdlemm10.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
20 cdlemm10.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
21 cdlemm10.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
2218, 19, 20, 21ltrnat 40107 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑃𝐴) → (𝑔𝑃) ∈ 𝐴)
2315, 16, 17, 22syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) ∈ 𝐴)
24 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
25 simpl1l 1225 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝐾 ∈ HL)
2625hllatd 39330 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝐾 ∈ Lat)
2724, 19atbase 39255 . . . . . . . . . . . . . 14 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2817, 27syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑃 ∈ (Base‘𝐾))
2924, 20, 21ltrncl 40092 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑃 ∈ (Base‘𝐾)) → (𝑔𝑃) ∈ (Base‘𝐾))
3015, 16, 28, 29syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) ∈ (Base‘𝐾))
31 cdlemm10.j . . . . . . . . . . . . . 14 = (join‘𝐾)
3224, 31latjcl 18374 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑔𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝑔𝑃)) ∈ (Base‘𝐾))
3326, 28, 30, 32syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑔𝑃)) ∈ (Base‘𝐾))
34 simpl3l 1229 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑉𝐴)
3524, 31, 19hlatjcl 39333 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑉𝐴) → (𝑃 𝑉) ∈ (Base‘𝐾))
3625, 17, 34, 35syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3724, 18, 31latlej2 18384 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑔𝑃) ∈ (Base‘𝐾)) → (𝑔𝑃) (𝑃 (𝑔𝑃)))
3826, 28, 30, 37syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) (𝑃 (𝑔𝑃)))
39 simpl2 1193 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
40 cdlemm10.r . . . . . . . . . . . . . . 15 𝑅 = ((trL‘𝐾)‘𝑊)
4118, 31, 19, 20, 21, 40trljat1 40133 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝑔)) = (𝑃 (𝑔𝑃)))
4215, 16, 39, 41syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑅𝑔)) = (𝑃 (𝑔𝑃)))
43 simprr 772 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑅𝑔) 𝑉)
4424, 20, 21, 40trlcl 40131 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → (𝑅𝑔) ∈ (Base‘𝐾))
4515, 16, 44syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑅𝑔) ∈ (Base‘𝐾))
4624, 19atbase 39255 . . . . . . . . . . . . . . . 16 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
4734, 46syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑉 ∈ (Base‘𝐾))
4824, 18, 31latjlej2 18389 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ ((𝑅𝑔) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → ((𝑅𝑔) 𝑉 → (𝑃 (𝑅𝑔)) (𝑃 𝑉)))
4926, 45, 47, 28, 48syl13anc 1374 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ((𝑅𝑔) 𝑉 → (𝑃 (𝑅𝑔)) (𝑃 𝑉)))
5043, 49mpd 15 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑅𝑔)) (𝑃 𝑉))
5142, 50eqbrtrrd 5126 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑔𝑃)) (𝑃 𝑉))
5224, 18, 26, 30, 33, 36, 38, 51lattrd 18381 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) (𝑃 𝑉))
5318, 19, 20, 21ltrnel 40106 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑔𝑃) ∈ 𝐴 ∧ ¬ (𝑔𝑃) 𝑊))
5453simprd 495 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ (𝑔𝑃) 𝑊)
5515, 16, 39, 54syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ¬ (𝑔𝑃) 𝑊)
5652, 55jca 511 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ((𝑔𝑃) (𝑃 𝑉) ∧ ¬ (𝑔𝑃) 𝑊))
57 breq1 5105 . . . . . . . . . . . 12 (𝑟 = (𝑔𝑃) → (𝑟 (𝑃 𝑉) ↔ (𝑔𝑃) (𝑃 𝑉)))
58 breq1 5105 . . . . . . . . . . . . 13 (𝑟 = (𝑔𝑃) → (𝑟 𝑊 ↔ (𝑔𝑃) 𝑊))
5958notbid 318 . . . . . . . . . . . 12 (𝑟 = (𝑔𝑃) → (¬ 𝑟 𝑊 ↔ ¬ (𝑔𝑃) 𝑊))
6057, 59anbi12d 632 . . . . . . . . . . 11 (𝑟 = (𝑔𝑃) → ((𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊) ↔ ((𝑔𝑃) (𝑃 𝑉) ∧ ¬ (𝑔𝑃) 𝑊)))
61 cdlemm10.c . . . . . . . . . . 11 𝐶 = {𝑟𝐴 ∣ (𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊)}
6260, 61elrab2 3659 . . . . . . . . . 10 ((𝑔𝑃) ∈ 𝐶 ↔ ((𝑔𝑃) ∈ 𝐴 ∧ ((𝑔𝑃) (𝑃 𝑉) ∧ ¬ (𝑔𝑃) 𝑊)))
6323, 56, 62sylanbrc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) ∈ 𝐶)
6418, 19, 20, 21cdlemeiota 40552 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑔𝑇) → 𝑔 = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
6515, 39, 16, 64syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑔 = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
6665eqcomd 2735 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)) = 𝑔)
67 eqeq2 2741 . . . . . . . . . . . . 13 (𝑠 = (𝑔𝑃) → ((𝑓𝑃) = 𝑠 ↔ (𝑓𝑃) = (𝑔𝑃)))
6867riotabidv 7328 . . . . . . . . . . . 12 (𝑠 = (𝑔𝑃) → (𝑓𝑇 (𝑓𝑃) = 𝑠) = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
6910, 68eqtrid 2776 . . . . . . . . . . 11 (𝑠 = (𝑔𝑃) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
7069eqeq1d 2731 . . . . . . . . . 10 (𝑠 = (𝑔𝑃) → (𝐹 = 𝑔 ↔ (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)) = 𝑔))
7170rspcev 3585 . . . . . . . . 9 (((𝑔𝑃) ∈ 𝐶 ∧ (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)) = 𝑔) → ∃𝑠𝐶 𝐹 = 𝑔)
7263, 66, 71syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ∃𝑠𝐶 𝐹 = 𝑔)
7372ex 412 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑔𝑇 ∧ (𝑅𝑔) 𝑉) → ∃𝑠𝐶 𝐹 = 𝑔))
74 breq1 5105 . . . . . . . . . . . . 13 (𝑟 = 𝑠 → (𝑟 (𝑃 𝑉) ↔ 𝑠 (𝑃 𝑉)))
75 breq1 5105 . . . . . . . . . . . . . 14 (𝑟 = 𝑠 → (𝑟 𝑊𝑠 𝑊))
7675notbid 318 . . . . . . . . . . . . 13 (𝑟 = 𝑠 → (¬ 𝑟 𝑊 ↔ ¬ 𝑠 𝑊))
7774, 76anbi12d 632 . . . . . . . . . . . 12 (𝑟 = 𝑠 → ((𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊) ↔ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)))
7877, 61elrab2 3659 . . . . . . . . . . 11 (𝑠𝐶 ↔ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)))
79 simpl1 1192 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
80 simpl2l 1227 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑃𝐴)
81 simpl2r 1228 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ¬ 𝑃 𝑊)
82 simprl 770 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑠𝐴)
83 simprrr 781 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ¬ 𝑠 𝑊)
8418, 19, 20, 21, 10ltrniotacl 40546 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐹𝑇)
8518, 19, 20, 21, 10ltrniotaval 40548 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝐹𝑃) = 𝑠)
8684, 85jca 511 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠))
8779, 80, 81, 82, 83, 86syl122anc 1381 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠))
88 simp3l 1202 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → 𝐹𝑇)
89 simp11 1204 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
90 simp12 1205 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
91 eqid 2729 . . . . . . . . . . . . . . . . 17 (meet‘𝐾) = (meet‘𝐾)
9218, 31, 91, 19, 20, 21, 40trlval2 40130 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
9389, 88, 90, 92syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
94 simp3r 1203 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝐹𝑃) = 𝑠)
9594oveq2d 7385 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑃 (𝐹𝑃)) = (𝑃 𝑠))
9695oveq1d 7384 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) = ((𝑃 𝑠)(meet‘𝐾)𝑊))
9793, 96eqtrd 2764 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑅𝐹) = ((𝑃 𝑠)(meet‘𝐾)𝑊))
98 simpl1l 1225 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝐾 ∈ HL)
99 simpl3l 1229 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑉𝐴)
10018, 31, 19hlatlej1 39341 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑉𝐴) → 𝑃 (𝑃 𝑉))
10198, 80, 99, 100syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑃 (𝑃 𝑉))
102 simprrl 780 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑠 (𝑃 𝑉))
10398hllatd 39330 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝐾 ∈ Lat)
10480, 27syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑃 ∈ (Base‘𝐾))
10524, 19atbase 39255 . . . . . . . . . . . . . . . . . . . 20 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
106105ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑠 ∈ (Base‘𝐾))
10798, 80, 99, 35syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝑃 𝑉) ∈ (Base‘𝐾))
10824, 18, 31latjle12 18385 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑉) ∧ 𝑠 (𝑃 𝑉)) ↔ (𝑃 𝑠) (𝑃 𝑉)))
109103, 104, 106, 107, 108syl13anc 1374 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 (𝑃 𝑉) ∧ 𝑠 (𝑃 𝑉)) ↔ (𝑃 𝑠) (𝑃 𝑉)))
110101, 102, 109mpbi2and 712 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝑃 𝑠) (𝑃 𝑉))
11124, 31, 19hlatjcl 39333 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑠𝐴) → (𝑃 𝑠) ∈ (Base‘𝐾))
11298, 80, 82, 111syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝑃 𝑠) ∈ (Base‘𝐾))
113 simpl1r 1226 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑊𝐻)
11424, 20lhpbase 39965 . . . . . . . . . . . . . . . . . . 19 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
115113, 114syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑊 ∈ (Base‘𝐾))
11624, 18, 91latmlem1 18404 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ ((𝑃 𝑠) ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 𝑠) (𝑃 𝑉) → ((𝑃 𝑠)(meet‘𝐾)𝑊) ((𝑃 𝑉)(meet‘𝐾)𝑊)))
117103, 112, 107, 115, 116syl13anc 1374 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑠) (𝑃 𝑉) → ((𝑃 𝑠)(meet‘𝐾)𝑊) ((𝑃 𝑉)(meet‘𝐾)𝑊)))
118110, 117mpd 15 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑠)(meet‘𝐾)𝑊) ((𝑃 𝑉)(meet‘𝐾)𝑊))
11918, 31, 91, 19, 20lhpat4N 40011 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑉)(meet‘𝐾)𝑊) = 𝑉)
120119adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑉)(meet‘𝐾)𝑊) = 𝑉)
121118, 120breqtrd 5128 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑠)(meet‘𝐾)𝑊) 𝑉)
1221213adant3 1132 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → ((𝑃 𝑠)(meet‘𝐾)𝑊) 𝑉)
12397, 122eqbrtrd 5124 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑅𝐹) 𝑉)
12488, 123jca 511 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉))
12587, 124mpd3an3 1464 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉))
12678, 125sylan2b 594 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑠𝐶) → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉))
127126ex 412 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑠𝐶 → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉)))
128 eleq1 2816 . . . . . . . . . . 11 (𝐹 = 𝑔 → (𝐹𝑇𝑔𝑇))
129 fveq2 6840 . . . . . . . . . . . 12 (𝐹 = 𝑔 → (𝑅𝐹) = (𝑅𝑔))
130129breq1d 5112 . . . . . . . . . . 11 (𝐹 = 𝑔 → ((𝑅𝐹) 𝑉 ↔ (𝑅𝑔) 𝑉))
131128, 130anbi12d 632 . . . . . . . . . 10 (𝐹 = 𝑔 → ((𝐹𝑇 ∧ (𝑅𝐹) 𝑉) ↔ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
132131biimpcd 249 . . . . . . . . 9 ((𝐹𝑇 ∧ (𝑅𝐹) 𝑉) → (𝐹 = 𝑔 → (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
133127, 132syl6 35 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑠𝐶 → (𝐹 = 𝑔 → (𝑔𝑇 ∧ (𝑅𝑔) 𝑉))))
134133rexlimdv 3132 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 𝐹 = 𝑔 → (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
13573, 134impbid 212 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑔𝑇 ∧ (𝑅𝑔) 𝑉) ↔ ∃𝑠𝐶 𝐹 = 𝑔))
13614, 135bitr4d 282 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔 ↔ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
137 fveq2 6840 . . . . . . 7 (𝑓 = 𝑔 → (𝑅𝑓) = (𝑅𝑔))
138137breq1d 5112 . . . . . 6 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑉 ↔ (𝑅𝑔) 𝑉))
139138elrab 3656 . . . . 5 (𝑔 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑉} ↔ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉))
140136, 139bitr4di 289 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔𝑔 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑉}))
141 simp1l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ HL)
142 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑊𝐻)
143 simp3l 1202 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉𝐴)
144143, 46syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 ∈ (Base‘𝐾))
145 simp3r 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 𝑊)
146 cdlemm10.i . . . . . . 7 𝐼 = ((DIsoA‘𝐾)‘𝑊)
14724, 18, 20, 21, 40, 146diaval 40999 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑉 𝑊)) → (𝐼𝑉) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑉})
148141, 142, 144, 145, 147syl22anc 838 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝐼𝑉) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑉})
149148eleq2d 2814 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑔 ∈ (𝐼𝑉) ↔ 𝑔 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑉}))
150140, 149bitr4d 282 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔𝑔 ∈ (𝐼𝑉)))
1515, 150bitrid 283 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑔 ∈ ran 𝐺𝑔 ∈ (𝐼𝑉)))
152151eqrdv 2727 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ran 𝐺 = (𝐼𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {crab 3402   class class class wbr 5102  cmpt 5183  ran crn 5632   Fn wfn 6494  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  Latclat 18366  Atomscatm 39229  HLchlt 39316  LHypclh 39951  LTrncltrn 40068  trLctrl 40125  DIsoAcdia 40995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-undef 8229  df-map 8778  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126  df-disoa 40996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator