| Step | Hyp | Ref
| Expression |
| 1 | | riotaex 7393 |
. . . . 5
⊢
(℩𝑓
∈ 𝑇 (𝑓‘𝑃) = 𝑞) ∈ V |
| 2 | | cdlemm10.g |
. . . . 5
⊢ 𝐺 = (𝑞 ∈ 𝐶 ↦ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑞)) |
| 3 | 1, 2 | fnmpti 6710 |
. . . 4
⊢ 𝐺 Fn 𝐶 |
| 4 | | fvelrnb 6968 |
. . . 4
⊢ (𝐺 Fn 𝐶 → (𝑔 ∈ ran 𝐺 ↔ ∃𝑠 ∈ 𝐶 (𝐺‘𝑠) = 𝑔)) |
| 5 | 3, 4 | ax-mp 5 |
. . 3
⊢ (𝑔 ∈ ran 𝐺 ↔ ∃𝑠 ∈ 𝐶 (𝐺‘𝑠) = 𝑔) |
| 6 | | eqeq2 2748 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑠 → ((𝑓‘𝑃) = 𝑞 ↔ (𝑓‘𝑃) = 𝑠)) |
| 7 | 6 | riotabidv 7391 |
. . . . . . . . . . 11
⊢ (𝑞 = 𝑠 → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑞) = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑠)) |
| 8 | | riotaex 7393 |
. . . . . . . . . . 11
⊢
(℩𝑓
∈ 𝑇 (𝑓‘𝑃) = 𝑠) ∈ V |
| 9 | 7, 2, 8 | fvmpt 7015 |
. . . . . . . . . 10
⊢ (𝑠 ∈ 𝐶 → (𝐺‘𝑠) = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑠)) |
| 10 | | cdlemm10.f |
. . . . . . . . . 10
⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑠) |
| 11 | 9, 10 | eqtr4di 2794 |
. . . . . . . . 9
⊢ (𝑠 ∈ 𝐶 → (𝐺‘𝑠) = 𝐹) |
| 12 | 11 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑠 ∈ 𝐶) → (𝐺‘𝑠) = 𝐹) |
| 13 | 12 | eqeq1d 2738 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑠 ∈ 𝐶) → ((𝐺‘𝑠) = 𝑔 ↔ 𝐹 = 𝑔)) |
| 14 | 13 | rexbidva 3176 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (∃𝑠 ∈ 𝐶 (𝐺‘𝑠) = 𝑔 ↔ ∃𝑠 ∈ 𝐶 𝐹 = 𝑔)) |
| 15 | | simpl1 1191 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 16 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → 𝑔 ∈ 𝑇) |
| 17 | | simpl2l 1226 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → 𝑃 ∈ 𝐴) |
| 18 | | cdlemm10.l |
. . . . . . . . . . . 12
⊢ ≤ =
(le‘𝐾) |
| 19 | | cdlemm10.a |
. . . . . . . . . . . 12
⊢ 𝐴 = (Atoms‘𝐾) |
| 20 | | cdlemm10.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (LHyp‘𝐾) |
| 21 | | cdlemm10.t |
. . . . . . . . . . . 12
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 22 | 18, 19, 20, 21 | ltrnat 40143 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝑔‘𝑃) ∈ 𝐴) |
| 23 | 15, 16, 17, 22 | syl3anc 1372 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑔‘𝑃) ∈ 𝐴) |
| 24 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 25 | | simpl1l 1224 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → 𝐾 ∈ HL) |
| 26 | 25 | hllatd 39366 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → 𝐾 ∈ Lat) |
| 27 | 24, 19 | atbase 39291 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 28 | 17, 27 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → 𝑃 ∈ (Base‘𝐾)) |
| 29 | 24, 20, 21 | ltrncl 40128 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑔‘𝑃) ∈ (Base‘𝐾)) |
| 30 | 15, 16, 28, 29 | syl3anc 1372 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑔‘𝑃) ∈ (Base‘𝐾)) |
| 31 | | cdlemm10.j |
. . . . . . . . . . . . . 14
⊢ ∨ =
(join‘𝐾) |
| 32 | 24, 31 | latjcl 18485 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑔‘𝑃) ∈ (Base‘𝐾)) → (𝑃 ∨ (𝑔‘𝑃)) ∈ (Base‘𝐾)) |
| 33 | 26, 28, 30, 32 | syl3anc 1372 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑃 ∨ (𝑔‘𝑃)) ∈ (Base‘𝐾)) |
| 34 | | simpl3l 1228 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → 𝑉 ∈ 𝐴) |
| 35 | 24, 31, 19 | hlatjcl 39369 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → (𝑃 ∨ 𝑉) ∈ (Base‘𝐾)) |
| 36 | 25, 17, 34, 35 | syl3anc 1372 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑃 ∨ 𝑉) ∈ (Base‘𝐾)) |
| 37 | 24, 18, 31 | latlej2 18495 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑔‘𝑃) ∈ (Base‘𝐾)) → (𝑔‘𝑃) ≤ (𝑃 ∨ (𝑔‘𝑃))) |
| 38 | 26, 28, 30, 37 | syl3anc 1372 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑔‘𝑃) ≤ (𝑃 ∨ (𝑔‘𝑃))) |
| 39 | | simpl2 1192 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 40 | | cdlemm10.r |
. . . . . . . . . . . . . . 15
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 41 | 18, 31, 19, 20, 21, 40 | trljat1 40169 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝑔)) = (𝑃 ∨ (𝑔‘𝑃))) |
| 42 | 15, 16, 39, 41 | syl3anc 1372 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑃 ∨ (𝑅‘𝑔)) = (𝑃 ∨ (𝑔‘𝑃))) |
| 43 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑅‘𝑔) ≤ 𝑉) |
| 44 | 24, 20, 21, 40 | trlcl 40167 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇) → (𝑅‘𝑔) ∈ (Base‘𝐾)) |
| 45 | 15, 16, 44 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑅‘𝑔) ∈ (Base‘𝐾)) |
| 46 | 24, 19 | atbase 39291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑉 ∈ 𝐴 → 𝑉 ∈ (Base‘𝐾)) |
| 47 | 34, 46 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → 𝑉 ∈ (Base‘𝐾)) |
| 48 | 24, 18, 31 | latjlej2 18500 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝑔) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → ((𝑅‘𝑔) ≤ 𝑉 → (𝑃 ∨ (𝑅‘𝑔)) ≤ (𝑃 ∨ 𝑉))) |
| 49 | 26, 45, 47, 28, 48 | syl13anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → ((𝑅‘𝑔) ≤ 𝑉 → (𝑃 ∨ (𝑅‘𝑔)) ≤ (𝑃 ∨ 𝑉))) |
| 50 | 43, 49 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑃 ∨ (𝑅‘𝑔)) ≤ (𝑃 ∨ 𝑉)) |
| 51 | 42, 50 | eqbrtrrd 5166 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑃 ∨ (𝑔‘𝑃)) ≤ (𝑃 ∨ 𝑉)) |
| 52 | 24, 18, 26, 30, 33, 36, 38, 51 | lattrd 18492 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑔‘𝑃) ≤ (𝑃 ∨ 𝑉)) |
| 53 | 18, 19, 20, 21 | ltrnel 40142 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑔‘𝑃) ∈ 𝐴 ∧ ¬ (𝑔‘𝑃) ≤ 𝑊)) |
| 54 | 53 | simprd 495 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ (𝑔‘𝑃) ≤ 𝑊) |
| 55 | 15, 16, 39, 54 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → ¬ (𝑔‘𝑃) ≤ 𝑊) |
| 56 | 52, 55 | jca 511 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → ((𝑔‘𝑃) ≤ (𝑃 ∨ 𝑉) ∧ ¬ (𝑔‘𝑃) ≤ 𝑊)) |
| 57 | | breq1 5145 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑔‘𝑃) → (𝑟 ≤ (𝑃 ∨ 𝑉) ↔ (𝑔‘𝑃) ≤ (𝑃 ∨ 𝑉))) |
| 58 | | breq1 5145 |
. . . . . . . . . . . . 13
⊢ (𝑟 = (𝑔‘𝑃) → (𝑟 ≤ 𝑊 ↔ (𝑔‘𝑃) ≤ 𝑊)) |
| 59 | 58 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑔‘𝑃) → (¬ 𝑟 ≤ 𝑊 ↔ ¬ (𝑔‘𝑃) ≤ 𝑊)) |
| 60 | 57, 59 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝑔‘𝑃) → ((𝑟 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑟 ≤ 𝑊) ↔ ((𝑔‘𝑃) ≤ (𝑃 ∨ 𝑉) ∧ ¬ (𝑔‘𝑃) ≤ 𝑊))) |
| 61 | | cdlemm10.c |
. . . . . . . . . . 11
⊢ 𝐶 = {𝑟 ∈ 𝐴 ∣ (𝑟 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑟 ≤ 𝑊)} |
| 62 | 60, 61 | elrab2 3694 |
. . . . . . . . . 10
⊢ ((𝑔‘𝑃) ∈ 𝐶 ↔ ((𝑔‘𝑃) ∈ 𝐴 ∧ ((𝑔‘𝑃) ≤ (𝑃 ∨ 𝑉) ∧ ¬ (𝑔‘𝑃) ≤ 𝑊))) |
| 63 | 23, 56, 62 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (𝑔‘𝑃) ∈ 𝐶) |
| 64 | 18, 19, 20, 21 | cdlemeiota 40588 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑔 ∈ 𝑇) → 𝑔 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝑔‘𝑃))) |
| 65 | 15, 39, 16, 64 | syl3anc 1372 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → 𝑔 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝑔‘𝑃))) |
| 66 | 65 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝑔‘𝑃)) = 𝑔) |
| 67 | | eqeq2 2748 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑔‘𝑃) → ((𝑓‘𝑃) = 𝑠 ↔ (𝑓‘𝑃) = (𝑔‘𝑃))) |
| 68 | 67 | riotabidv 7391 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑔‘𝑃) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑠) = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝑔‘𝑃))) |
| 69 | 10, 68 | eqtrid 2788 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑔‘𝑃) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝑔‘𝑃))) |
| 70 | 69 | eqeq1d 2738 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑔‘𝑃) → (𝐹 = 𝑔 ↔ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝑔‘𝑃)) = 𝑔)) |
| 71 | 70 | rspcev 3621 |
. . . . . . . . 9
⊢ (((𝑔‘𝑃) ∈ 𝐶 ∧ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝑔‘𝑃)) = 𝑔) → ∃𝑠 ∈ 𝐶 𝐹 = 𝑔) |
| 72 | 63, 66, 71 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) → ∃𝑠 ∈ 𝐶 𝐹 = 𝑔) |
| 73 | 72 | ex 412 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ((𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉) → ∃𝑠 ∈ 𝐶 𝐹 = 𝑔)) |
| 74 | | breq1 5145 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑠 → (𝑟 ≤ (𝑃 ∨ 𝑉) ↔ 𝑠 ≤ (𝑃 ∨ 𝑉))) |
| 75 | | breq1 5145 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑠 → (𝑟 ≤ 𝑊 ↔ 𝑠 ≤ 𝑊)) |
| 76 | 75 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑠 → (¬ 𝑟 ≤ 𝑊 ↔ ¬ 𝑠 ≤ 𝑊)) |
| 77 | 74, 76 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑠 → ((𝑟 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑟 ≤ 𝑊) ↔ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) |
| 78 | 77, 61 | elrab2 3694 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ 𝐶 ↔ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) |
| 79 | | simpl1 1191 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 80 | | simpl2l 1226 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → 𝑃 ∈ 𝐴) |
| 81 | | simpl2r 1227 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → ¬ 𝑃 ≤ 𝑊) |
| 82 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → 𝑠 ∈ 𝐴) |
| 83 | | simprrr 781 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → ¬ 𝑠 ≤ 𝑊) |
| 84 | 18, 19, 20, 21, 10 | ltrniotacl 40582 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
| 85 | 18, 19, 20, 21, 10 | ltrniotaval 40584 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝐹‘𝑃) = 𝑠) |
| 86 | 84, 85 | jca 511 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) |
| 87 | 79, 80, 81, 82, 83, 86 | syl122anc 1380 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) |
| 88 | | simp3l 1201 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) → 𝐹 ∈ 𝑇) |
| 89 | | simp11 1203 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 90 | | simp12 1204 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 91 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢
(meet‘𝐾) =
(meet‘𝐾) |
| 92 | 18, 31, 91, 19, 20, 21, 40 | trlval2 40166 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊)) |
| 93 | 89, 88, 90, 92 | syl3anc 1372 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) → (𝑅‘𝐹) = ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊)) |
| 94 | | simp3r 1202 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) → (𝐹‘𝑃) = 𝑠) |
| 95 | 94 | oveq2d 7448 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) → (𝑃 ∨ (𝐹‘𝑃)) = (𝑃 ∨ 𝑠)) |
| 96 | 95 | oveq1d 7447 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) → ((𝑃 ∨ (𝐹‘𝑃))(meet‘𝐾)𝑊) = ((𝑃 ∨ 𝑠)(meet‘𝐾)𝑊)) |
| 97 | 93, 96 | eqtrd 2776 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) → (𝑅‘𝐹) = ((𝑃 ∨ 𝑠)(meet‘𝐾)𝑊)) |
| 98 | | simpl1l 1224 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → 𝐾 ∈ HL) |
| 99 | | simpl3l 1228 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → 𝑉 ∈ 𝐴) |
| 100 | 18, 31, 19 | hlatlej1 39377 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑉)) |
| 101 | 98, 80, 99, 100 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → 𝑃 ≤ (𝑃 ∨ 𝑉)) |
| 102 | | simprrl 780 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → 𝑠 ≤ (𝑃 ∨ 𝑉)) |
| 103 | 98 | hllatd 39366 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → 𝐾 ∈ Lat) |
| 104 | 80, 27 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → 𝑃 ∈ (Base‘𝐾)) |
| 105 | 24, 19 | atbase 39291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ 𝐴 → 𝑠 ∈ (Base‘𝐾)) |
| 106 | 105 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → 𝑠 ∈ (Base‘𝐾)) |
| 107 | 98, 80, 99, 35 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → (𝑃 ∨ 𝑉) ∈ (Base‘𝐾)) |
| 108 | 24, 18, 31 | latjle12 18496 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑉) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑃 ∨ 𝑉) ∧ 𝑠 ≤ (𝑃 ∨ 𝑉)) ↔ (𝑃 ∨ 𝑠) ≤ (𝑃 ∨ 𝑉))) |
| 109 | 103, 104,
106, 107, 108 | syl13anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → ((𝑃 ≤ (𝑃 ∨ 𝑉) ∧ 𝑠 ≤ (𝑃 ∨ 𝑉)) ↔ (𝑃 ∨ 𝑠) ≤ (𝑃 ∨ 𝑉))) |
| 110 | 101, 102,
109 | mpbi2and 712 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → (𝑃 ∨ 𝑠) ≤ (𝑃 ∨ 𝑉)) |
| 111 | 24, 31, 19 | hlatjcl 39369 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) → (𝑃 ∨ 𝑠) ∈ (Base‘𝐾)) |
| 112 | 98, 80, 82, 111 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → (𝑃 ∨ 𝑠) ∈ (Base‘𝐾)) |
| 113 | | simpl1r 1225 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → 𝑊 ∈ 𝐻) |
| 114 | 24, 20 | lhpbase 40001 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 115 | 113, 114 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → 𝑊 ∈ (Base‘𝐾)) |
| 116 | 24, 18, 91 | latmlem1 18515 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑠) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑠) ≤ (𝑃 ∨ 𝑉) → ((𝑃 ∨ 𝑠)(meet‘𝐾)𝑊) ≤ ((𝑃 ∨ 𝑉)(meet‘𝐾)𝑊))) |
| 117 | 103, 112,
107, 115, 116 | syl13anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → ((𝑃 ∨ 𝑠) ≤ (𝑃 ∨ 𝑉) → ((𝑃 ∨ 𝑠)(meet‘𝐾)𝑊) ≤ ((𝑃 ∨ 𝑉)(meet‘𝐾)𝑊))) |
| 118 | 110, 117 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → ((𝑃 ∨ 𝑠)(meet‘𝐾)𝑊) ≤ ((𝑃 ∨ 𝑉)(meet‘𝐾)𝑊)) |
| 119 | 18, 31, 91, 19, 20 | lhpat4N 40047 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ((𝑃 ∨ 𝑉)(meet‘𝐾)𝑊) = 𝑉) |
| 120 | 119 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → ((𝑃 ∨ 𝑉)(meet‘𝐾)𝑊) = 𝑉) |
| 121 | 118, 120 | breqtrd 5168 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → ((𝑃 ∨ 𝑠)(meet‘𝐾)𝑊) ≤ 𝑉) |
| 122 | 121 | 3adant3 1132 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) → ((𝑃 ∨ 𝑠)(meet‘𝐾)𝑊) ≤ 𝑉) |
| 123 | 97, 122 | eqbrtrd 5164 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) → (𝑅‘𝐹) ≤ 𝑉) |
| 124 | 88, 123 | jca 511 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑠)) → (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑉)) |
| 125 | 87, 124 | mpd3an3 1463 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≤ (𝑃 ∨ 𝑉) ∧ ¬ 𝑠 ≤ 𝑊))) → (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑉)) |
| 126 | 78, 125 | sylan2b 594 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑠 ∈ 𝐶) → (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑉)) |
| 127 | 126 | ex 412 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑠 ∈ 𝐶 → (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑉))) |
| 128 | | eleq1 2828 |
. . . . . . . . . . 11
⊢ (𝐹 = 𝑔 → (𝐹 ∈ 𝑇 ↔ 𝑔 ∈ 𝑇)) |
| 129 | | fveq2 6905 |
. . . . . . . . . . . 12
⊢ (𝐹 = 𝑔 → (𝑅‘𝐹) = (𝑅‘𝑔)) |
| 130 | 129 | breq1d 5152 |
. . . . . . . . . . 11
⊢ (𝐹 = 𝑔 → ((𝑅‘𝐹) ≤ 𝑉 ↔ (𝑅‘𝑔) ≤ 𝑉)) |
| 131 | 128, 130 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝐹 = 𝑔 → ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑉) ↔ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉))) |
| 132 | 131 | biimpcd 249 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑉) → (𝐹 = 𝑔 → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉))) |
| 133 | 127, 132 | syl6 35 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑠 ∈ 𝐶 → (𝐹 = 𝑔 → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)))) |
| 134 | 133 | rexlimdv 3152 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (∃𝑠 ∈ 𝐶 𝐹 = 𝑔 → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉))) |
| 135 | 73, 134 | impbid 212 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ((𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉) ↔ ∃𝑠 ∈ 𝐶 𝐹 = 𝑔)) |
| 136 | 14, 135 | bitr4d 282 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (∃𝑠 ∈ 𝐶 (𝐺‘𝑠) = 𝑔 ↔ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉))) |
| 137 | | fveq2 6905 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (𝑅‘𝑓) = (𝑅‘𝑔)) |
| 138 | 137 | breq1d 5152 |
. . . . . 6
⊢ (𝑓 = 𝑔 → ((𝑅‘𝑓) ≤ 𝑉 ↔ (𝑅‘𝑔) ≤ 𝑉)) |
| 139 | 138 | elrab 3691 |
. . . . 5
⊢ (𝑔 ∈ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑉} ↔ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ 𝑉)) |
| 140 | 136, 139 | bitr4di 289 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (∃𝑠 ∈ 𝐶 (𝐺‘𝑠) = 𝑔 ↔ 𝑔 ∈ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑉})) |
| 141 | | simp1l 1197 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝐾 ∈ HL) |
| 142 | | simp1r 1198 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
| 143 | | simp3l 1201 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑉 ∈ 𝐴) |
| 144 | 143, 46 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑉 ∈ (Base‘𝐾)) |
| 145 | | simp3r 1202 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑉 ≤ 𝑊) |
| 146 | | cdlemm10.i |
. . . . . . 7
⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| 147 | 24, 18, 20, 21, 40, 146 | diaval 41035 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑉 ≤ 𝑊)) → (𝐼‘𝑉) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑉}) |
| 148 | 141, 142,
144, 145, 147 | syl22anc 838 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝐼‘𝑉) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑉}) |
| 149 | 148 | eleq2d 2826 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑔 ∈ (𝐼‘𝑉) ↔ 𝑔 ∈ {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑉})) |
| 150 | 140, 149 | bitr4d 282 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (∃𝑠 ∈ 𝐶 (𝐺‘𝑠) = 𝑔 ↔ 𝑔 ∈ (𝐼‘𝑉))) |
| 151 | 5, 150 | bitrid 283 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑔 ∈ ran 𝐺 ↔ 𝑔 ∈ (𝐼‘𝑉))) |
| 152 | 151 | eqrdv 2734 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ran 𝐺 = (𝐼‘𝑉)) |