Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemm10N Structured version   Visualization version   GIF version

Theorem cdlemm10N 41101
Description: The image of the map 𝐺 is the entire one-dimensional subspace (𝐼𝑉). Remark after Lemma M of [Crawley] p. 121 line 23. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemm10.l = (le‘𝐾)
cdlemm10.j = (join‘𝐾)
cdlemm10.a 𝐴 = (Atoms‘𝐾)
cdlemm10.h 𝐻 = (LHyp‘𝐾)
cdlemm10.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemm10.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemm10.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
cdlemm10.c 𝐶 = {𝑟𝐴 ∣ (𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊)}
cdlemm10.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑠)
cdlemm10.g 𝐺 = (𝑞𝐶 ↦ (𝑓𝑇 (𝑓𝑃) = 𝑞))
Assertion
Ref Expression
cdlemm10N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ran 𝐺 = (𝐼𝑉))
Distinct variable groups:   𝑓,𝑟,𝑠,   ,𝑟   𝐴,𝑓,𝑟,𝑠   𝑠,𝑞,𝐶   𝐺,𝑠   𝑓,𝐻,𝑠   𝑓,𝐾,𝑠   𝑓,𝑞,𝑃,𝑟,𝑠   𝑅,𝑓,𝑠   𝑇,𝑓,𝑞,𝑠   𝑓,𝑉,𝑟,𝑠   𝑓,𝑊,𝑟,𝑠
Allowed substitution hints:   𝐴(𝑞)   𝐶(𝑓,𝑟)   𝑅(𝑟,𝑞)   𝑇(𝑟)   𝐹(𝑓,𝑠,𝑟,𝑞)   𝐺(𝑓,𝑟,𝑞)   𝐻(𝑟,𝑞)   𝐼(𝑓,𝑠,𝑟,𝑞)   (𝑓,𝑠,𝑞)   𝐾(𝑟,𝑞)   (𝑞)   𝑉(𝑞)   𝑊(𝑞)

Proof of Theorem cdlemm10N
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 riotaex 7310 . . . . 5 (𝑓𝑇 (𝑓𝑃) = 𝑞) ∈ V
2 cdlemm10.g . . . . 5 𝐺 = (𝑞𝐶 ↦ (𝑓𝑇 (𝑓𝑃) = 𝑞))
31, 2fnmpti 6625 . . . 4 𝐺 Fn 𝐶
4 fvelrnb 6883 . . . 4 (𝐺 Fn 𝐶 → (𝑔 ∈ ran 𝐺 ↔ ∃𝑠𝐶 (𝐺𝑠) = 𝑔))
53, 4ax-mp 5 . . 3 (𝑔 ∈ ran 𝐺 ↔ ∃𝑠𝐶 (𝐺𝑠) = 𝑔)
6 eqeq2 2741 . . . . . . . . . . . 12 (𝑞 = 𝑠 → ((𝑓𝑃) = 𝑞 ↔ (𝑓𝑃) = 𝑠))
76riotabidv 7308 . . . . . . . . . . 11 (𝑞 = 𝑠 → (𝑓𝑇 (𝑓𝑃) = 𝑞) = (𝑓𝑇 (𝑓𝑃) = 𝑠))
8 riotaex 7310 . . . . . . . . . . 11 (𝑓𝑇 (𝑓𝑃) = 𝑠) ∈ V
97, 2, 8fvmpt 6930 . . . . . . . . . 10 (𝑠𝐶 → (𝐺𝑠) = (𝑓𝑇 (𝑓𝑃) = 𝑠))
10 cdlemm10.f . . . . . . . . . 10 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑠)
119, 10eqtr4di 2782 . . . . . . . . 9 (𝑠𝐶 → (𝐺𝑠) = 𝐹)
1211adantl 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑠𝐶) → (𝐺𝑠) = 𝐹)
1312eqeq1d 2731 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑠𝐶) → ((𝐺𝑠) = 𝑔𝐹 = 𝑔))
1413rexbidva 3151 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔 ↔ ∃𝑠𝐶 𝐹 = 𝑔))
15 simpl1 1192 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simprl 770 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑔𝑇)
17 simpl2l 1227 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑃𝐴)
18 cdlemm10.l . . . . . . . . . . . 12 = (le‘𝐾)
19 cdlemm10.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
20 cdlemm10.h . . . . . . . . . . . 12 𝐻 = (LHyp‘𝐾)
21 cdlemm10.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
2218, 19, 20, 21ltrnat 40123 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑃𝐴) → (𝑔𝑃) ∈ 𝐴)
2315, 16, 17, 22syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) ∈ 𝐴)
24 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
25 simpl1l 1225 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝐾 ∈ HL)
2625hllatd 39347 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝐾 ∈ Lat)
2724, 19atbase 39272 . . . . . . . . . . . . . 14 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2817, 27syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑃 ∈ (Base‘𝐾))
2924, 20, 21ltrncl 40108 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑃 ∈ (Base‘𝐾)) → (𝑔𝑃) ∈ (Base‘𝐾))
3015, 16, 28, 29syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) ∈ (Base‘𝐾))
31 cdlemm10.j . . . . . . . . . . . . . 14 = (join‘𝐾)
3224, 31latjcl 18345 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑔𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝑔𝑃)) ∈ (Base‘𝐾))
3326, 28, 30, 32syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑔𝑃)) ∈ (Base‘𝐾))
34 simpl3l 1229 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑉𝐴)
3524, 31, 19hlatjcl 39350 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑉𝐴) → (𝑃 𝑉) ∈ (Base‘𝐾))
3625, 17, 34, 35syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 𝑉) ∈ (Base‘𝐾))
3724, 18, 31latlej2 18355 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑔𝑃) ∈ (Base‘𝐾)) → (𝑔𝑃) (𝑃 (𝑔𝑃)))
3826, 28, 30, 37syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) (𝑃 (𝑔𝑃)))
39 simpl2 1193 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
40 cdlemm10.r . . . . . . . . . . . . . . 15 𝑅 = ((trL‘𝐾)‘𝑊)
4118, 31, 19, 20, 21, 40trljat1 40149 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝑔)) = (𝑃 (𝑔𝑃)))
4215, 16, 39, 41syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑅𝑔)) = (𝑃 (𝑔𝑃)))
43 simprr 772 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑅𝑔) 𝑉)
4424, 20, 21, 40trlcl 40147 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → (𝑅𝑔) ∈ (Base‘𝐾))
4515, 16, 44syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑅𝑔) ∈ (Base‘𝐾))
4624, 19atbase 39272 . . . . . . . . . . . . . . . 16 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
4734, 46syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑉 ∈ (Base‘𝐾))
4824, 18, 31latjlej2 18360 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ ((𝑅𝑔) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → ((𝑅𝑔) 𝑉 → (𝑃 (𝑅𝑔)) (𝑃 𝑉)))
4926, 45, 47, 28, 48syl13anc 1374 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ((𝑅𝑔) 𝑉 → (𝑃 (𝑅𝑔)) (𝑃 𝑉)))
5043, 49mpd 15 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑅𝑔)) (𝑃 𝑉))
5142, 50eqbrtrrd 5116 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑃 (𝑔𝑃)) (𝑃 𝑉))
5224, 18, 26, 30, 33, 36, 38, 51lattrd 18352 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) (𝑃 𝑉))
5318, 19, 20, 21ltrnel 40122 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑔𝑃) ∈ 𝐴 ∧ ¬ (𝑔𝑃) 𝑊))
5453simprd 495 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ (𝑔𝑃) 𝑊)
5515, 16, 39, 54syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ¬ (𝑔𝑃) 𝑊)
5652, 55jca 511 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ((𝑔𝑃) (𝑃 𝑉) ∧ ¬ (𝑔𝑃) 𝑊))
57 breq1 5095 . . . . . . . . . . . 12 (𝑟 = (𝑔𝑃) → (𝑟 (𝑃 𝑉) ↔ (𝑔𝑃) (𝑃 𝑉)))
58 breq1 5095 . . . . . . . . . . . . 13 (𝑟 = (𝑔𝑃) → (𝑟 𝑊 ↔ (𝑔𝑃) 𝑊))
5958notbid 318 . . . . . . . . . . . 12 (𝑟 = (𝑔𝑃) → (¬ 𝑟 𝑊 ↔ ¬ (𝑔𝑃) 𝑊))
6057, 59anbi12d 632 . . . . . . . . . . 11 (𝑟 = (𝑔𝑃) → ((𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊) ↔ ((𝑔𝑃) (𝑃 𝑉) ∧ ¬ (𝑔𝑃) 𝑊)))
61 cdlemm10.c . . . . . . . . . . 11 𝐶 = {𝑟𝐴 ∣ (𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊)}
6260, 61elrab2 3651 . . . . . . . . . 10 ((𝑔𝑃) ∈ 𝐶 ↔ ((𝑔𝑃) ∈ 𝐴 ∧ ((𝑔𝑃) (𝑃 𝑉) ∧ ¬ (𝑔𝑃) 𝑊)))
6323, 56, 62sylanbrc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑔𝑃) ∈ 𝐶)
6418, 19, 20, 21cdlemeiota 40568 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑔𝑇) → 𝑔 = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
6515, 39, 16, 64syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → 𝑔 = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
6665eqcomd 2735 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)) = 𝑔)
67 eqeq2 2741 . . . . . . . . . . . . 13 (𝑠 = (𝑔𝑃) → ((𝑓𝑃) = 𝑠 ↔ (𝑓𝑃) = (𝑔𝑃)))
6867riotabidv 7308 . . . . . . . . . . . 12 (𝑠 = (𝑔𝑃) → (𝑓𝑇 (𝑓𝑃) = 𝑠) = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
6910, 68eqtrid 2776 . . . . . . . . . . 11 (𝑠 = (𝑔𝑃) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)))
7069eqeq1d 2731 . . . . . . . . . 10 (𝑠 = (𝑔𝑃) → (𝐹 = 𝑔 ↔ (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)) = 𝑔))
7170rspcev 3577 . . . . . . . . 9 (((𝑔𝑃) ∈ 𝐶 ∧ (𝑓𝑇 (𝑓𝑃) = (𝑔𝑃)) = 𝑔) → ∃𝑠𝐶 𝐹 = 𝑔)
7263, 66, 71syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)) → ∃𝑠𝐶 𝐹 = 𝑔)
7372ex 412 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑔𝑇 ∧ (𝑅𝑔) 𝑉) → ∃𝑠𝐶 𝐹 = 𝑔))
74 breq1 5095 . . . . . . . . . . . . 13 (𝑟 = 𝑠 → (𝑟 (𝑃 𝑉) ↔ 𝑠 (𝑃 𝑉)))
75 breq1 5095 . . . . . . . . . . . . . 14 (𝑟 = 𝑠 → (𝑟 𝑊𝑠 𝑊))
7675notbid 318 . . . . . . . . . . . . 13 (𝑟 = 𝑠 → (¬ 𝑟 𝑊 ↔ ¬ 𝑠 𝑊))
7774, 76anbi12d 632 . . . . . . . . . . . 12 (𝑟 = 𝑠 → ((𝑟 (𝑃 𝑉) ∧ ¬ 𝑟 𝑊) ↔ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)))
7877, 61elrab2 3651 . . . . . . . . . . 11 (𝑠𝐶 ↔ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)))
79 simpl1 1192 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
80 simpl2l 1227 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑃𝐴)
81 simpl2r 1228 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ¬ 𝑃 𝑊)
82 simprl 770 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑠𝐴)
83 simprrr 781 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ¬ 𝑠 𝑊)
8418, 19, 20, 21, 10ltrniotacl 40562 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐹𝑇)
8518, 19, 20, 21, 10ltrniotaval 40564 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝐹𝑃) = 𝑠)
8684, 85jca 511 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠))
8779, 80, 81, 82, 83, 86syl122anc 1381 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠))
88 simp3l 1202 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → 𝐹𝑇)
89 simp11 1204 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
90 simp12 1205 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
91 eqid 2729 . . . . . . . . . . . . . . . . 17 (meet‘𝐾) = (meet‘𝐾)
9218, 31, 91, 19, 20, 21, 40trlval2 40146 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
9389, 88, 90, 92syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊))
94 simp3r 1203 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝐹𝑃) = 𝑠)
9594oveq2d 7365 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑃 (𝐹𝑃)) = (𝑃 𝑠))
9695oveq1d 7364 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → ((𝑃 (𝐹𝑃))(meet‘𝐾)𝑊) = ((𝑃 𝑠)(meet‘𝐾)𝑊))
9793, 96eqtrd 2764 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑅𝐹) = ((𝑃 𝑠)(meet‘𝐾)𝑊))
98 simpl1l 1225 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝐾 ∈ HL)
99 simpl3l 1229 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑉𝐴)
10018, 31, 19hlatlej1 39358 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑉𝐴) → 𝑃 (𝑃 𝑉))
10198, 80, 99, 100syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑃 (𝑃 𝑉))
102 simprrl 780 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑠 (𝑃 𝑉))
10398hllatd 39347 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝐾 ∈ Lat)
10480, 27syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑃 ∈ (Base‘𝐾))
10524, 19atbase 39272 . . . . . . . . . . . . . . . . . . . 20 (𝑠𝐴𝑠 ∈ (Base‘𝐾))
106105ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑠 ∈ (Base‘𝐾))
10798, 80, 99, 35syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝑃 𝑉) ∈ (Base‘𝐾))
10824, 18, 31latjle12 18356 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑠 ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑉) ∧ 𝑠 (𝑃 𝑉)) ↔ (𝑃 𝑠) (𝑃 𝑉)))
109103, 104, 106, 107, 108syl13anc 1374 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 (𝑃 𝑉) ∧ 𝑠 (𝑃 𝑉)) ↔ (𝑃 𝑠) (𝑃 𝑉)))
110101, 102, 109mpbi2and 712 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝑃 𝑠) (𝑃 𝑉))
11124, 31, 19hlatjcl 39350 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑠𝐴) → (𝑃 𝑠) ∈ (Base‘𝐾))
11298, 80, 82, 111syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝑃 𝑠) ∈ (Base‘𝐾))
113 simpl1r 1226 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑊𝐻)
11424, 20lhpbase 39981 . . . . . . . . . . . . . . . . . . 19 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
115113, 114syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → 𝑊 ∈ (Base‘𝐾))
11624, 18, 91latmlem1 18375 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ ((𝑃 𝑠) ∈ (Base‘𝐾) ∧ (𝑃 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 𝑠) (𝑃 𝑉) → ((𝑃 𝑠)(meet‘𝐾)𝑊) ((𝑃 𝑉)(meet‘𝐾)𝑊)))
117103, 112, 107, 115, 116syl13anc 1374 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑠) (𝑃 𝑉) → ((𝑃 𝑠)(meet‘𝐾)𝑊) ((𝑃 𝑉)(meet‘𝐾)𝑊)))
118110, 117mpd 15 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑠)(meet‘𝐾)𝑊) ((𝑃 𝑉)(meet‘𝐾)𝑊))
11918, 31, 91, 19, 20lhpat4N 40027 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑉)(meet‘𝐾)𝑊) = 𝑉)
120119adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑉)(meet‘𝐾)𝑊) = 𝑉)
121118, 120breqtrd 5118 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → ((𝑃 𝑠)(meet‘𝐾)𝑊) 𝑉)
1221213adant3 1132 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → ((𝑃 𝑠)(meet‘𝐾)𝑊) 𝑉)
12397, 122eqbrtrd 5114 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝑅𝐹) 𝑉)
12488, 123jca 511 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊)) ∧ (𝐹𝑇 ∧ (𝐹𝑃) = 𝑠)) → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉))
12587, 124mpd3an3 1464 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ (𝑠𝐴 ∧ (𝑠 (𝑃 𝑉) ∧ ¬ 𝑠 𝑊))) → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉))
12678, 125sylan2b 594 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑠𝐶) → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉))
127126ex 412 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑠𝐶 → (𝐹𝑇 ∧ (𝑅𝐹) 𝑉)))
128 eleq1 2816 . . . . . . . . . . 11 (𝐹 = 𝑔 → (𝐹𝑇𝑔𝑇))
129 fveq2 6822 . . . . . . . . . . . 12 (𝐹 = 𝑔 → (𝑅𝐹) = (𝑅𝑔))
130129breq1d 5102 . . . . . . . . . . 11 (𝐹 = 𝑔 → ((𝑅𝐹) 𝑉 ↔ (𝑅𝑔) 𝑉))
131128, 130anbi12d 632 . . . . . . . . . 10 (𝐹 = 𝑔 → ((𝐹𝑇 ∧ (𝑅𝐹) 𝑉) ↔ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
132131biimpcd 249 . . . . . . . . 9 ((𝐹𝑇 ∧ (𝑅𝐹) 𝑉) → (𝐹 = 𝑔 → (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
133127, 132syl6 35 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑠𝐶 → (𝐹 = 𝑔 → (𝑔𝑇 ∧ (𝑅𝑔) 𝑉))))
134133rexlimdv 3128 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 𝐹 = 𝑔 → (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
13573, 134impbid 212 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑔𝑇 ∧ (𝑅𝑔) 𝑉) ↔ ∃𝑠𝐶 𝐹 = 𝑔))
13614, 135bitr4d 282 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔 ↔ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉)))
137 fveq2 6822 . . . . . . 7 (𝑓 = 𝑔 → (𝑅𝑓) = (𝑅𝑔))
138137breq1d 5102 . . . . . 6 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑉 ↔ (𝑅𝑔) 𝑉))
139138elrab 3648 . . . . 5 (𝑔 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑉} ↔ (𝑔𝑇 ∧ (𝑅𝑔) 𝑉))
140136, 139bitr4di 289 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔𝑔 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑉}))
141 simp1l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ HL)
142 simp1r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑊𝐻)
143 simp3l 1202 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉𝐴)
144143, 46syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 ∈ (Base‘𝐾))
145 simp3r 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 𝑊)
146 cdlemm10.i . . . . . . 7 𝐼 = ((DIsoA‘𝐾)‘𝑊)
14724, 18, 20, 21, 40, 146diaval 41015 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑉 𝑊)) → (𝐼𝑉) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑉})
148141, 142, 144, 145, 147syl22anc 838 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝐼𝑉) = {𝑓𝑇 ∣ (𝑅𝑓) 𝑉})
149148eleq2d 2814 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑔 ∈ (𝐼𝑉) ↔ 𝑔 ∈ {𝑓𝑇 ∣ (𝑅𝑓) 𝑉}))
150140, 149bitr4d 282 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (∃𝑠𝐶 (𝐺𝑠) = 𝑔𝑔 ∈ (𝐼𝑉)))
1515, 150bitrid 283 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑔 ∈ ran 𝐺𝑔 ∈ (𝐼𝑉)))
152151eqrdv 2727 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ran 𝐺 = (𝐼𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {crab 3394   class class class wbr 5092  cmpt 5173  ran crn 5620   Fn wfn 6477  cfv 6482  crio 7305  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39246  HLchlt 39333  LHypclh 39967  LTrncltrn 40084  trLctrl 40141  DIsoAcdia 41011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-riotaBAD 38936
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-undef 8206  df-map 8755  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-disoa 41012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator