MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummatr01 Structured version   Visualization version   GIF version

Theorem gsummatr01 22686
Description: Lemma 1 for smadiadetlem4 22696. (Contributed by AV, 8-Jan-2019.)
Hypotheses
Ref Expression
gsummatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
gsummatr01.r 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
gsummatr01.0 0 = (0g𝐺)
gsummatr01.s 𝑆 = (Base‘𝐺)
Assertion
Ref Expression
gsummatr01 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑛   𝐵,𝑖,𝑗,𝑛   𝑖,𝐺,𝑗,𝑛   𝑖,𝐾,𝑗,𝑛   𝐾,𝑟   𝑖,𝐿,𝑗,𝑛   𝐿,𝑟   𝑖,𝑁,𝑗,𝑛   𝑃,𝑟   𝑄,𝑟   𝑄,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗,𝑛   𝑆,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛
Allowed substitution hints:   𝐴(𝑟)   𝐵(𝑟)   𝑃(𝑖,𝑗,𝑛)   𝑅(𝑟)   𝑆(𝑟)   𝐺(𝑟)   𝑁(𝑟)   0 (𝑟)

Proof of Theorem gsummatr01
StepHypRef Expression
1 difsnid 4835 . . . . . . 7 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
21eqcomd 2746 . . . . . 6 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
323ad2ant1 1133 . . . . 5 ((𝐾𝑁𝐿𝑁𝑄𝑅) → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
433ad2ant3 1135 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
54mpteq1d 5261 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))) = (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))
65oveq2d 7464 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))))
7 gsummatr01.p . . 3 𝑃 = (Base‘(SymGrp‘𝑁))
8 gsummatr01.r . . 3 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
9 gsummatr01.0 . . 3 0 = (0g𝐺)
10 gsummatr01.s . . 3 𝑆 = (Base‘𝐺)
117, 8, 9, 10gsummatr01lem3 22684 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))))
12 eqidd 2741 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
13 fveq1 6919 . . . . . . . . . . . 12 (𝑟 = 𝑄 → (𝑟𝐾) = (𝑄𝐾))
1413eqeq1d 2742 . . . . . . . . . . 11 (𝑟 = 𝑄 → ((𝑟𝐾) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
1514, 8elrab2 3711 . . . . . . . . . 10 (𝑄𝑅 ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿))
16 eqeq2 2752 . . . . . . . . . . . 12 ((𝑄𝐾) = 𝐿 → (𝑗 = (𝑄𝐾) ↔ 𝑗 = 𝐿))
1716adantl 481 . . . . . . . . . . 11 ((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) → (𝑗 = (𝑄𝐾) ↔ 𝑗 = 𝐿))
1817anbi2d 629 . . . . . . . . . 10 ((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) → ((𝑖 = 𝐾𝑗 = (𝑄𝐾)) ↔ (𝑖 = 𝐾𝑗 = 𝐿)))
1915, 18sylbi 217 . . . . . . . . 9 (𝑄𝑅 → ((𝑖 = 𝐾𝑗 = (𝑄𝐾)) ↔ (𝑖 = 𝐾𝑗 = 𝐿)))
20193ad2ant3 1135 . . . . . . . 8 ((𝐾𝑁𝐿𝑁𝑄𝑅) → ((𝑖 = 𝐾𝑗 = (𝑄𝐾)) ↔ (𝑖 = 𝐾𝑗 = 𝐿)))
21 iftrue 4554 . . . . . . . . 9 (𝑖 = 𝐾 → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑗 = 𝐿, 0 , 𝐵))
22 iftrue 4554 . . . . . . . . 9 (𝑗 = 𝐿 → if(𝑗 = 𝐿, 0 , 𝐵) = 0 )
2321, 22sylan9eq 2800 . . . . . . . 8 ((𝑖 = 𝐾𝑗 = 𝐿) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = 0 )
2420, 23biimtrdi 253 . . . . . . 7 ((𝐾𝑁𝐿𝑁𝑄𝑅) → ((𝑖 = 𝐾𝑗 = (𝑄𝐾)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = 0 ))
2524imp 406 . . . . . 6 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ (𝑖 = 𝐾𝑗 = (𝑄𝐾))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = 0 )
26 simp1 1136 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → 𝐾𝑁)
277, 8gsummatr01lem1 22682 . . . . . . . 8 ((𝑄𝑅𝐾𝑁) → (𝑄𝐾) ∈ 𝑁)
2827ancoms 458 . . . . . . 7 ((𝐾𝑁𝑄𝑅) → (𝑄𝐾) ∈ 𝑁)
29283adant2 1131 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑄𝐾) ∈ 𝑁)
309fvexi 6934 . . . . . . 7 0 ∈ V
3130a1i 11 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → 0 ∈ V)
3212, 25, 26, 29, 31ovmpod 7602 . . . . 5 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = 0 )
33323ad2ant3 1135 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = 0 )
3433oveq2d 7464 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺) 0 ))
35 cmnmnd 19839 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
3635adantr 480 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → 𝐺 ∈ Mnd)
37363ad2ant1 1133 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐺 ∈ Mnd)
38 eqid 2740 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
39 simp1l 1197 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐺 ∈ CMnd)
40 diffi 9242 . . . . . . 7 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
4140adantl 481 . . . . . 6 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → (𝑁 ∖ {𝐾}) ∈ Fin)
42413ad2ant1 1133 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑁 ∖ {𝐾}) ∈ Fin)
43 eqidd 2741 . . . . . . . . 9 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
44 eqeq1 2744 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (𝑖 = 𝐾𝑛 = 𝐾))
4544adantr 480 . . . . . . . . . . 11 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖 = 𝐾𝑛 = 𝐾))
46 eqeq1 2744 . . . . . . . . . . . . 13 (𝑗 = (𝑄𝑛) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
4746ifbid 4571 . . . . . . . . . . . 12 (𝑗 = (𝑄𝑛) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
4847adantl 481 . . . . . . . . . . 11 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
49 oveq12 7457 . . . . . . . . . . 11 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
5045, 48, 49ifbieq12d 4576 . . . . . . . . . 10 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))))
51 eldifsni 4815 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝐾)
5251neneqd 2951 . . . . . . . . . . . 12 (𝑛 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑛 = 𝐾)
5352iffalsed 4559 . . . . . . . . . . 11 (𝑛 ∈ (𝑁 ∖ {𝐾}) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
5453adantl 481 . . . . . . . . . 10 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
5550, 54sylan9eqr 2802 . . . . . . . . 9 ((((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = (𝑛𝐴(𝑄𝑛)))
56 eldifi 4154 . . . . . . . . . 10 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝑁)
5756adantl 481 . . . . . . . . 9 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
58 simp3 1138 . . . . . . . . . 10 ((𝐾𝑁𝐿𝑁𝑄𝑅) → 𝑄𝑅)
597, 8gsummatr01lem1 22682 . . . . . . . . . 10 ((𝑄𝑅𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
6058, 56, 59syl2an 595 . . . . . . . . 9 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
61 ovexd 7483 . . . . . . . . 9 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
6243, 55, 57, 60, 61ovmpod 7602 . . . . . . . 8 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
63623ad2antl3 1187 . . . . . . 7 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
6410eleq2i 2836 . . . . . . . . . . . . . . . 16 ((𝑖𝐴𝑗) ∈ 𝑆 ↔ (𝑖𝐴𝑗) ∈ (Base‘𝐺))
65642ralbii 3134 . . . . . . . . . . . . . . 15 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺))
667, 8gsummatr01lem2 22683 . . . . . . . . . . . . . . 15 ((𝑄𝑅𝑛𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
6765, 66biimtrid 242 . . . . . . . . . . . . . 14 ((𝑄𝑅𝑛𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
6858, 56, 67syl2anr 596 . . . . . . . . . . . . 13 ((𝑛 ∈ (𝑁 ∖ {𝐾}) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
6968ex 412 . . . . . . . . . . . 12 (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
7069com13 88 . . . . . . . . . . 11 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
7170adantr 480 . . . . . . . . . 10 ((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
7271imp 406 . . . . . . . . 9 (((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
73723adant1 1130 . . . . . . . 8 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
7473imp 406 . . . . . . 7 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))
7563, 74eqeltrd 2844 . . . . . 6 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) ∈ (Base‘𝐺))
7675ralrimiva 3152 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})(𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) ∈ (Base‘𝐺))
7738, 39, 42, 76gsummptcl 20009 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) ∈ (Base‘𝐺))
78 eqid 2740 . . . . 5 (+g𝐺) = (+g𝐺)
7938, 78, 9mndrid 18793 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) ∈ (Base‘𝐺)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺) 0 ) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))))
8037, 77, 79syl2anc 583 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺) 0 ) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))))
817, 8, 9, 10gsummatr01lem4 22685 . . . . 5 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))
8281mpteq2dva 5266 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))) = (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛))))
8382oveq2d 7464 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))))
8434, 80, 833eqtrd 2784 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))))
856, 11, 843eqtrd 2784 1 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  ifcif 4548  {csn 4648  cmpt 5249  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003  Basecbs 17258  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  SymGrpcsymg 19410  CMndccmn 19822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-efmnd 18904  df-mulg 19108  df-cntz 19357  df-symg 19411  df-cmn 19824
This theorem is referenced by:  smadiadetlem4  22696
  Copyright terms: Public domain W3C validator