Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummatr01 Structured version   Visualization version   GIF version

Theorem gsummatr01 21305
Hypotheses
Ref Expression
gsummatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
gsummatr01.r 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
gsummatr01.0 0 = (0g𝐺)
gsummatr01.s 𝑆 = (Base‘𝐺)
Assertion
Ref Expression
gsummatr01 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑛   𝐵,𝑖,𝑗,𝑛   𝑖,𝐺,𝑗,𝑛   𝑖,𝐾,𝑗,𝑛   𝐾,𝑟   𝑖,𝐿,𝑗,𝑛   𝐿,𝑟   𝑖,𝑁,𝑗,𝑛   𝑃,𝑟   𝑄,𝑟   𝑄,𝑖,𝑗,𝑛   𝑅,𝑖,𝑗,𝑛   𝑆,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛
Allowed substitution hints:   𝐴(𝑟)   𝐵(𝑟)   𝑃(𝑖,𝑗,𝑛)   𝑅(𝑟)   𝑆(𝑟)   𝐺(𝑟)   𝑁(𝑟)   0 (𝑟)

Proof of Theorem gsummatr01
StepHypRef Expression
1 difsnid 4706 . . . . . . 7 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
21eqcomd 2804 . . . . . 6 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
323ad2ant1 1130 . . . . 5 ((𝐾𝑁𝐿𝑁𝑄𝑅) → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
433ad2ant3 1132 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
54mpteq1d 5123 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))) = (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))
65oveq2d 7161 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))))
7 gsummatr01.p . . 3 𝑃 = (Base‘(SymGrp‘𝑁))
8 gsummatr01.r . . 3 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
9 gsummatr01.0 . . 3 0 = (0g𝐺)
10 gsummatr01.s . . 3 𝑆 = (Base‘𝐺)
117, 8, 9, 10gsummatr01lem3 21303 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))))
12 eqidd 2799 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
13 fveq1 6654 . . . . . . . . . . . 12 (𝑟 = 𝑄 → (𝑟𝐾) = (𝑄𝐾))
1413eqeq1d 2800 . . . . . . . . . . 11 (𝑟 = 𝑄 → ((𝑟𝐾) = 𝐿 ↔ (𝑄𝐾) = 𝐿))
1514, 8elrab2 3633 . . . . . . . . . 10 (𝑄𝑅 ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐿))
16 eqeq2 2810 . . . . . . . . . . . 12 ((𝑄𝐾) = 𝐿 → (𝑗 = (𝑄𝐾) ↔ 𝑗 = 𝐿))
1716adantl 485 . . . . . . . . . . 11 ((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) → (𝑗 = (𝑄𝐾) ↔ 𝑗 = 𝐿))
1817anbi2d 631 . . . . . . . . . 10 ((𝑄𝑃 ∧ (𝑄𝐾) = 𝐿) → ((𝑖 = 𝐾𝑗 = (𝑄𝐾)) ↔ (𝑖 = 𝐾𝑗 = 𝐿)))
1915, 18sylbi 220 . . . . . . . . 9 (𝑄𝑅 → ((𝑖 = 𝐾𝑗 = (𝑄𝐾)) ↔ (𝑖 = 𝐾𝑗 = 𝐿)))
20193ad2ant3 1132 . . . . . . . 8 ((𝐾𝑁𝐿𝑁𝑄𝑅) → ((𝑖 = 𝐾𝑗 = (𝑄𝐾)) ↔ (𝑖 = 𝐾𝑗 = 𝐿)))
21 iftrue 4434 . . . . . . . . 9 (𝑖 = 𝐾 → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑗 = 𝐿, 0 , 𝐵))
22 iftrue 4434 . . . . . . . . 9 (𝑗 = 𝐿 → if(𝑗 = 𝐿, 0 , 𝐵) = 0 )
2321, 22sylan9eq 2853 . . . . . . . 8 ((𝑖 = 𝐾𝑗 = 𝐿) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = 0 )
2420, 23syl6bi 256 . . . . . . 7 ((𝐾𝑁𝐿𝑁𝑄𝑅) → ((𝑖 = 𝐾𝑗 = (𝑄𝐾)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = 0 ))
2524imp 410 . . . . . 6 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ (𝑖 = 𝐾𝑗 = (𝑄𝐾))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = 0 )
26 simp1 1133 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → 𝐾𝑁)
277, 8gsummatr01lem1 21301 . . . . . . . 8 ((𝑄𝑅𝐾𝑁) → (𝑄𝐾) ∈ 𝑁)
2827ancoms 462 . . . . . . 7 ((𝐾𝑁𝑄𝑅) → (𝑄𝐾) ∈ 𝑁)
29283adant2 1128 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑄𝐾) ∈ 𝑁)
309fvexi 6669 . . . . . . 7 0 ∈ V
3130a1i 11 . . . . . 6 ((𝐾𝑁𝐿𝑁𝑄𝑅) → 0 ∈ V)
3212, 25, 26, 29, 31ovmpod 7292 . . . . 5 ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = 0 )
33323ad2ant3 1132 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾)) = 0 )
3433oveq2d 7161 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺) 0 ))
35 cmnmnd 18935 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
3635adantr 484 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → 𝐺 ∈ Mnd)
37363ad2ant1 1130 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐺 ∈ Mnd)
38 eqid 2798 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
39 simp1l 1194 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → 𝐺 ∈ CMnd)
40 diffi 8752 . . . . . . 7 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
4140adantl 485 . . . . . 6 ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → (𝑁 ∖ {𝐾}) ∈ Fin)
42413ad2ant1 1130 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑁 ∖ {𝐾}) ∈ Fin)
43 eqidd 2799 . . . . . . . . 9 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))))
44 eqeq1 2802 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (𝑖 = 𝐾𝑛 = 𝐾))
4544adantr 484 . . . . . . . . . . 11 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖 = 𝐾𝑛 = 𝐾))
46 eqeq1 2802 . . . . . . . . . . . . 13 (𝑗 = (𝑄𝑛) → (𝑗 = 𝐿 ↔ (𝑄𝑛) = 𝐿))
4746ifbid 4450 . . . . . . . . . . . 12 (𝑗 = (𝑄𝑛) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
4847adantl 485 . . . . . . . . . . 11 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄𝑛) = 𝐿, 0 , 𝐵))
49 oveq12 7154 . . . . . . . . . . 11 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄𝑛)))
5045, 48, 49ifbieq12d 4455 . . . . . . . . . 10 ((𝑖 = 𝑛𝑗 = (𝑄𝑛)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))))
51 eldifsni 4686 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝐾)
5251neneqd 2992 . . . . . . . . . . . 12 (𝑛 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑛 = 𝐾)
5352iffalsed 4439 . . . . . . . . . . 11 (𝑛 ∈ (𝑁 ∖ {𝐾}) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
5453adantl 485 . . . . . . . . . 10 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → if(𝑛 = 𝐾, if((𝑄𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄𝑛))) = (𝑛𝐴(𝑄𝑛)))
5550, 54sylan9eqr 2855 . . . . . . . . 9 ((((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛𝑗 = (𝑄𝑛))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = (𝑛𝐴(𝑄𝑛)))
56 eldifi 4057 . . . . . . . . . 10 (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛𝑁)
5756adantl 485 . . . . . . . . 9 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛𝑁)
58 simp3 1135 . . . . . . . . . 10 ((𝐾𝑁𝐿𝑁𝑄𝑅) → 𝑄𝑅)
597, 8gsummatr01lem1 21301 . . . . . . . . . 10 ((𝑄𝑅𝑛𝑁) → (𝑄𝑛) ∈ 𝑁)
6058, 56, 59syl2an 598 . . . . . . . . 9 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄𝑛) ∈ 𝑁)
61 ovexd 7180 . . . . . . . . 9 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ V)
6243, 55, 57, 60, 61ovmpod 7292 . . . . . . . 8 (((𝐾𝑁𝐿𝑁𝑄𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
63623ad2antl3 1184 . . . . . . 7 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛𝐴(𝑄𝑛)))
6410eleq2i 2881 . . . . . . . . . . . . . . . 16 ((𝑖𝐴𝑗) ∈ 𝑆 ↔ (𝑖𝐴𝑗) ∈ (Base‘𝐺))
65642ralbii 3134 . . . . . . . . . . . . . . 15 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺))
667, 8gsummatr01lem2 21302 . . . . . . . . . . . . . . 15 ((𝑄𝑅𝑛𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
6765, 66syl5bi 245 . . . . . . . . . . . . . 14 ((𝑄𝑅𝑛𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
6858, 56, 67syl2anr 599 . . . . . . . . . . . . 13 ((𝑛 ∈ (𝑁 ∖ {𝐾}) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
6968ex 416 . . . . . . . . . . . 12 (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
7069com13 88 . . . . . . . . . . 11 (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
7170adantr 484 . . . . . . . . . 10 ((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) → ((𝐾𝑁𝐿𝑁𝑄𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))))
7271imp 410 . . . . . . . . 9 (((∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
73723adant1 1127 . . . . . . . 8 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺)))
7473imp 410 . . . . . . 7 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄𝑛)) ∈ (Base‘𝐺))
7563, 74eqeltrd 2890 . . . . . 6 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) ∈ (Base‘𝐺))
7675ralrimiva 3149 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})(𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) ∈ (Base‘𝐺))
7738, 39, 42, 76gsummptcl 19101 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) ∈ (Base‘𝐺))
78 eqid 2798 . . . . 5 (+g𝐺) = (+g𝐺)
7938, 78, 9mndrid 17944 . . . 4 ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) ∈ (Base‘𝐺)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺) 0 ) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))))
8037, 77, 79syl2anc 587 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺) 0 ) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))))
817, 8, 9, 10gsummatr01lem4 21304 . . . . 5 ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))
8281mpteq2dva 5129 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))) = (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛))))
8382oveq2d 7161 . . 3 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))))
8434, 80, 833eqtrd 2837 . 2 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))))
856, 11, 843eqtrd 2837 1 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110  Vcvv 3442   ∖ cdif 3880   ∪ cun 3881  ifcif 4428  {csn 4528   ↦ cmpt 5114  ‘cfv 6332  (class class class)co 7145   ∈ cmpo 7147  Fincfn 8510  Basecbs 16495  +gcplusg 16577  0gc0g 16725   Σg cgsu 16726  Mndcmnd 17923  SymGrpcsymg 18508  CMndccmn 18919 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7400  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-map 8409  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-uz 12252  df-fz 12906  df-fzo 13049  df-seq 13385  df-hash 13707  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-tset 16596  df-0g 16727  df-gsum 16728  df-mre 16869  df-mrc 16870  df-acs 16872  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-submnd 17969  df-efmnd 18046  df-mulg 18238  df-cntz 18460  df-symg 18509  df-cmn 18921 This theorem is referenced by:  smadiadetlem4  21315
 Copyright terms: Public domain W3C validator