Proof of Theorem gsummatr01
Step | Hyp | Ref
| Expression |
1 | | difsnid 4743 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁) |
2 | 1 | eqcomd 2744 |
. . . . . 6
⊢ (𝐾 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
3 | 2 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
4 | 3 | 3ad2ant3 1134 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
5 | 4 | mpteq1d 5169 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))) = (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) |
6 | 5 | oveq2d 7291 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))) |
7 | | gsummatr01.p |
. . 3
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
8 | | gsummatr01.r |
. . 3
⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} |
9 | | gsummatr01.0 |
. . 3
⊢ 0 =
(0g‘𝐺) |
10 | | gsummatr01.s |
. . 3
⊢ 𝑆 = (Base‘𝐺) |
11 | 7, 8, 9, 10 | gsummatr01lem3 21806 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺)(𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)))) |
12 | | eqidd 2739 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))) |
13 | | fveq1 6773 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑄 → (𝑟‘𝐾) = (𝑄‘𝐾)) |
14 | 13 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑄 → ((𝑟‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = 𝐿)) |
15 | 14, 8 | elrab2 3627 |
. . . . . . . . . 10
⊢ (𝑄 ∈ 𝑅 ↔ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿)) |
16 | | eqeq2 2750 |
. . . . . . . . . . . 12
⊢ ((𝑄‘𝐾) = 𝐿 → (𝑗 = (𝑄‘𝐾) ↔ 𝑗 = 𝐿)) |
17 | 16 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿) → (𝑗 = (𝑄‘𝐾) ↔ 𝑗 = 𝐿)) |
18 | 17 | anbi2d 629 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿) → ((𝑖 = 𝐾 ∧ 𝑗 = (𝑄‘𝐾)) ↔ (𝑖 = 𝐾 ∧ 𝑗 = 𝐿))) |
19 | 15, 18 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑄 ∈ 𝑅 → ((𝑖 = 𝐾 ∧ 𝑗 = (𝑄‘𝐾)) ↔ (𝑖 = 𝐾 ∧ 𝑗 = 𝐿))) |
20 | 19 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → ((𝑖 = 𝐾 ∧ 𝑗 = (𝑄‘𝐾)) ↔ (𝑖 = 𝐾 ∧ 𝑗 = 𝐿))) |
21 | | iftrue 4465 |
. . . . . . . . 9
⊢ (𝑖 = 𝐾 → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑗 = 𝐿, 0 , 𝐵)) |
22 | | iftrue 4465 |
. . . . . . . . 9
⊢ (𝑗 = 𝐿 → if(𝑗 = 𝐿, 0 , 𝐵) = 0 ) |
23 | 21, 22 | sylan9eq 2798 |
. . . . . . . 8
⊢ ((𝑖 = 𝐾 ∧ 𝑗 = 𝐿) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = 0 ) |
24 | 20, 23 | syl6bi 252 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → ((𝑖 = 𝐾 ∧ 𝑗 = (𝑄‘𝐾)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = 0 )) |
25 | 24 | imp 407 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ (𝑖 = 𝐾 ∧ 𝑗 = (𝑄‘𝐾))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = 0 ) |
26 | | simp1 1135 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → 𝐾 ∈ 𝑁) |
27 | 7, 8 | gsummatr01lem1 21804 |
. . . . . . . 8
⊢ ((𝑄 ∈ 𝑅 ∧ 𝐾 ∈ 𝑁) → (𝑄‘𝐾) ∈ 𝑁) |
28 | 27 | ancoms 459 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑄‘𝐾) ∈ 𝑁) |
29 | 28 | 3adant2 1130 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑄‘𝐾) ∈ 𝑁) |
30 | 9 | fvexi 6788 |
. . . . . . 7
⊢ 0 ∈
V |
31 | 30 | a1i 11 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → 0 ∈ V) |
32 | 12, 25, 26, 29, 31 | ovmpod 7425 |
. . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)) = 0 ) |
33 | 32 | 3ad2ant3 1134 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)) = 0 ) |
34 | 33 | oveq2d 7291 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺)(𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺) 0 )) |
35 | | cmnmnd 19402 |
. . . . . 6
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
36 | 35 | adantr 481 |
. . . . 5
⊢ ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → 𝐺 ∈ Mnd) |
37 | 36 | 3ad2ant1 1132 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → 𝐺 ∈ Mnd) |
38 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐺) =
(Base‘𝐺) |
39 | | simp1l 1196 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → 𝐺 ∈ CMnd) |
40 | | diffi 8962 |
. . . . . . 7
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin) |
41 | 40 | adantl 482 |
. . . . . 6
⊢ ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → (𝑁 ∖ {𝐾}) ∈ Fin) |
42 | 41 | 3ad2ant1 1132 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑁 ∖ {𝐾}) ∈ Fin) |
43 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))) |
44 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑛 → (𝑖 = 𝐾 ↔ 𝑛 = 𝐾)) |
45 | 44 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛)) → (𝑖 = 𝐾 ↔ 𝑛 = 𝐾)) |
46 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑄‘𝑛) → (𝑗 = 𝐿 ↔ (𝑄‘𝑛) = 𝐿)) |
47 | 46 | ifbid 4482 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑄‘𝑛) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄‘𝑛) = 𝐿, 0 , 𝐵)) |
48 | 47 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛)) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄‘𝑛) = 𝐿, 0 , 𝐵)) |
49 | | oveq12 7284 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛)) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄‘𝑛))) |
50 | 45, 48, 49 | ifbieq12d 4487 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑛 = 𝐾, if((𝑄‘𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄‘𝑛)))) |
51 | | eldifsni 4723 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛 ≠ 𝐾) |
52 | 51 | neneqd 2948 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑛 = 𝐾) |
53 | 52 | iffalsed 4470 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → if(𝑛 = 𝐾, if((𝑄‘𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄‘𝑛))) = (𝑛𝐴(𝑄‘𝑛))) |
54 | 53 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → if(𝑛 = 𝐾, if((𝑄‘𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄‘𝑛))) = (𝑛𝐴(𝑄‘𝑛))) |
55 | 50, 54 | sylan9eqr 2800 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = (𝑛𝐴(𝑄‘𝑛))) |
56 | | eldifi 4061 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛 ∈ 𝑁) |
57 | 56 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛 ∈ 𝑁) |
58 | | simp3 1137 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → 𝑄 ∈ 𝑅) |
59 | 7, 8 | gsummatr01lem1 21804 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ 𝑅 ∧ 𝑛 ∈ 𝑁) → (𝑄‘𝑛) ∈ 𝑁) |
60 | 58, 56, 59 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑛) ∈ 𝑁) |
61 | | ovexd 7310 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄‘𝑛)) ∈ V) |
62 | 43, 55, 57, 60, 61 | ovmpod 7425 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) = (𝑛𝐴(𝑄‘𝑛))) |
63 | 62 | 3ad2antl3 1186 |
. . . . . . 7
⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) = (𝑛𝐴(𝑄‘𝑛))) |
64 | 10 | eleq2i 2830 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖𝐴𝑗) ∈ 𝑆 ↔ (𝑖𝐴𝑗) ∈ (Base‘𝐺)) |
65 | 64 | 2ralbii 3093 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺)) |
66 | 7, 8 | gsummatr01lem2 21805 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄 ∈ 𝑅 ∧ 𝑛 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺))) |
67 | 65, 66 | syl5bi 241 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 ∈ 𝑅 ∧ 𝑛 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺))) |
68 | 58, 56, 67 | syl2anr 597 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ (𝑁 ∖ {𝐾}) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺))) |
69 | 68 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)))) |
70 | 69 | com13 88 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)))) |
71 | 70 | adantr 481 |
. . . . . . . . . 10
⊢
((∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)))) |
72 | 71 | imp 407 |
. . . . . . . . 9
⊢
(((∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺))) |
73 | 72 | 3adant1 1129 |
. . . . . . . 8
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺))) |
74 | 73 | imp 407 |
. . . . . . 7
⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)) |
75 | 63, 74 | eqeltrd 2839 |
. . . . . 6
⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝐺)) |
76 | 75 | ralrimiva 3103 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})(𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝐺)) |
77 | 38, 39, 42, 76 | gsummptcl 19568 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) ∈ (Base‘𝐺)) |
78 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
79 | 38, 78, 9 | mndrid 18406 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝐺 Σg
(𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) ∈ (Base‘𝐺)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))) |
80 | 37, 77, 79 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))) |
81 | 7, 8, 9, 10 | gsummatr01lem4 21807 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛))) |
82 | 81 | mpteq2dva 5174 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))) = (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛)))) |
83 | 82 | oveq2d 7291 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛))))) |
84 | 34, 80, 83 | 3eqtrd 2782 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺)(𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛))))) |
85 | 6, 11, 84 | 3eqtrd 2782 |
1
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛))))) |