Proof of Theorem gsummatr01
| Step | Hyp | Ref
| Expression |
| 1 | | difsnid 4810 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁) |
| 2 | 1 | eqcomd 2743 |
. . . . . 6
⊢ (𝐾 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
| 3 | 2 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
| 4 | 3 | 3ad2ant3 1136 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
| 5 | 4 | mpteq1d 5237 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))) = (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) |
| 6 | 5 | oveq2d 7447 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))) |
| 7 | | gsummatr01.p |
. . 3
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
| 8 | | gsummatr01.r |
. . 3
⊢ 𝑅 = {𝑟 ∈ 𝑃 ∣ (𝑟‘𝐾) = 𝐿} |
| 9 | | gsummatr01.0 |
. . 3
⊢ 0 =
(0g‘𝐺) |
| 10 | | gsummatr01.s |
. . 3
⊢ 𝑆 = (Base‘𝐺) |
| 11 | 7, 8, 9, 10 | gsummatr01lem3 22663 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺)(𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)))) |
| 12 | | eqidd 2738 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))) |
| 13 | | fveq1 6905 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑄 → (𝑟‘𝐾) = (𝑄‘𝐾)) |
| 14 | 13 | eqeq1d 2739 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑄 → ((𝑟‘𝐾) = 𝐿 ↔ (𝑄‘𝐾) = 𝐿)) |
| 15 | 14, 8 | elrab2 3695 |
. . . . . . . . . 10
⊢ (𝑄 ∈ 𝑅 ↔ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿)) |
| 16 | | eqeq2 2749 |
. . . . . . . . . . . 12
⊢ ((𝑄‘𝐾) = 𝐿 → (𝑗 = (𝑄‘𝐾) ↔ 𝑗 = 𝐿)) |
| 17 | 16 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿) → (𝑗 = (𝑄‘𝐾) ↔ 𝑗 = 𝐿)) |
| 18 | 17 | anbi2d 630 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐿) → ((𝑖 = 𝐾 ∧ 𝑗 = (𝑄‘𝐾)) ↔ (𝑖 = 𝐾 ∧ 𝑗 = 𝐿))) |
| 19 | 15, 18 | sylbi 217 |
. . . . . . . . 9
⊢ (𝑄 ∈ 𝑅 → ((𝑖 = 𝐾 ∧ 𝑗 = (𝑄‘𝐾)) ↔ (𝑖 = 𝐾 ∧ 𝑗 = 𝐿))) |
| 20 | 19 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → ((𝑖 = 𝐾 ∧ 𝑗 = (𝑄‘𝐾)) ↔ (𝑖 = 𝐾 ∧ 𝑗 = 𝐿))) |
| 21 | | iftrue 4531 |
. . . . . . . . 9
⊢ (𝑖 = 𝐾 → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑗 = 𝐿, 0 , 𝐵)) |
| 22 | | iftrue 4531 |
. . . . . . . . 9
⊢ (𝑗 = 𝐿 → if(𝑗 = 𝐿, 0 , 𝐵) = 0 ) |
| 23 | 21, 22 | sylan9eq 2797 |
. . . . . . . 8
⊢ ((𝑖 = 𝐾 ∧ 𝑗 = 𝐿) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = 0 ) |
| 24 | 20, 23 | biimtrdi 253 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → ((𝑖 = 𝐾 ∧ 𝑗 = (𝑄‘𝐾)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = 0 )) |
| 25 | 24 | imp 406 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ (𝑖 = 𝐾 ∧ 𝑗 = (𝑄‘𝐾))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = 0 ) |
| 26 | | simp1 1137 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → 𝐾 ∈ 𝑁) |
| 27 | 7, 8 | gsummatr01lem1 22661 |
. . . . . . . 8
⊢ ((𝑄 ∈ 𝑅 ∧ 𝐾 ∈ 𝑁) → (𝑄‘𝐾) ∈ 𝑁) |
| 28 | 27 | ancoms 458 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑄‘𝐾) ∈ 𝑁) |
| 29 | 28 | 3adant2 1132 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑄‘𝐾) ∈ 𝑁) |
| 30 | 9 | fvexi 6920 |
. . . . . . 7
⊢ 0 ∈
V |
| 31 | 30 | a1i 11 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → 0 ∈ V) |
| 32 | 12, 25, 26, 29, 31 | ovmpod 7585 |
. . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)) = 0 ) |
| 33 | 32 | 3ad2ant3 1136 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾)) = 0 ) |
| 34 | 33 | oveq2d 7447 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺)(𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺) 0 )) |
| 35 | | cmnmnd 19815 |
. . . . . 6
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| 36 | 35 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → 𝐺 ∈ Mnd) |
| 37 | 36 | 3ad2ant1 1134 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → 𝐺 ∈ Mnd) |
| 38 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 39 | | simp1l 1198 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → 𝐺 ∈ CMnd) |
| 40 | | diffi 9215 |
. . . . . . 7
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin) |
| 41 | 40 | adantl 481 |
. . . . . 6
⊢ ((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) → (𝑁 ∖ {𝐾}) ∈ Fin) |
| 42 | 41 | 3ad2ant1 1134 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑁 ∖ {𝐾}) ∈ Fin) |
| 43 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))) |
| 44 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑛 → (𝑖 = 𝐾 ↔ 𝑛 = 𝐾)) |
| 45 | 44 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛)) → (𝑖 = 𝐾 ↔ 𝑛 = 𝐾)) |
| 46 | | eqeq1 2741 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑄‘𝑛) → (𝑗 = 𝐿 ↔ (𝑄‘𝑛) = 𝐿)) |
| 47 | 46 | ifbid 4549 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑄‘𝑛) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄‘𝑛) = 𝐿, 0 , 𝐵)) |
| 48 | 47 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛)) → if(𝑗 = 𝐿, 0 , 𝐵) = if((𝑄‘𝑛) = 𝐿, 0 , 𝐵)) |
| 49 | | oveq12 7440 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛)) → (𝑖𝐴𝑗) = (𝑛𝐴(𝑄‘𝑛))) |
| 50 | 45, 48, 49 | ifbieq12d 4554 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = if(𝑛 = 𝐾, if((𝑄‘𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄‘𝑛)))) |
| 51 | | eldifsni 4790 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛 ≠ 𝐾) |
| 52 | 51 | neneqd 2945 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝑛 = 𝐾) |
| 53 | 52 | iffalsed 4536 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → if(𝑛 = 𝐾, if((𝑄‘𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄‘𝑛))) = (𝑛𝐴(𝑄‘𝑛))) |
| 54 | 53 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → if(𝑛 = 𝐾, if((𝑄‘𝑛) = 𝐿, 0 , 𝐵), (𝑛𝐴(𝑄‘𝑛))) = (𝑛𝐴(𝑄‘𝑛))) |
| 55 | 50, 54 | sylan9eqr 2799 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) ∧ (𝑖 = 𝑛 ∧ 𝑗 = (𝑄‘𝑛))) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)) = (𝑛𝐴(𝑄‘𝑛))) |
| 56 | | eldifi 4131 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → 𝑛 ∈ 𝑁) |
| 57 | 56 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → 𝑛 ∈ 𝑁) |
| 58 | | simp3 1139 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → 𝑄 ∈ 𝑅) |
| 59 | 7, 8 | gsummatr01lem1 22661 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ 𝑅 ∧ 𝑛 ∈ 𝑁) → (𝑄‘𝑛) ∈ 𝑁) |
| 60 | 58, 56, 59 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑛) ∈ 𝑁) |
| 61 | | ovexd 7466 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄‘𝑛)) ∈ V) |
| 62 | 43, 55, 57, 60, 61 | ovmpod 7585 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) = (𝑛𝐴(𝑄‘𝑛))) |
| 63 | 62 | 3ad2antl3 1188 |
. . . . . . 7
⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) = (𝑛𝐴(𝑄‘𝑛))) |
| 64 | 10 | eleq2i 2833 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖𝐴𝑗) ∈ 𝑆 ↔ (𝑖𝐴𝑗) ∈ (Base‘𝐺)) |
| 65 | 64 | 2ralbii 3128 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺)) |
| 66 | 7, 8 | gsummatr01lem2 22662 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄 ∈ 𝑅 ∧ 𝑛 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺))) |
| 67 | 65, 66 | biimtrid 242 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 ∈ 𝑅 ∧ 𝑛 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺))) |
| 68 | 58, 56, 67 | syl2anr 597 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ (𝑁 ∖ {𝐾}) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺))) |
| 69 | 68 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)))) |
| 70 | 69 | com13 88 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 → ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)))) |
| 71 | 70 | adantr 480 |
. . . . . . . . . 10
⊢
((∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)))) |
| 72 | 71 | imp 406 |
. . . . . . . . 9
⊢
(((∀𝑖 ∈
𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺))) |
| 73 | 72 | 3adant1 1131 |
. . . . . . . 8
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺))) |
| 74 | 73 | imp 406 |
. . . . . . 7
⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛𝐴(𝑄‘𝑛)) ∈ (Base‘𝐺)) |
| 75 | 63, 74 | eqeltrd 2841 |
. . . . . 6
⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝐺)) |
| 76 | 75 | ralrimiva 3146 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})(𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) ∈ (Base‘𝐺)) |
| 77 | 38, 39, 42, 76 | gsummptcl 19985 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) ∈ (Base‘𝐺)) |
| 78 | | eqid 2737 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 79 | 38, 78, 9 | mndrid 18768 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝐺 Σg
(𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) ∈ (Base‘𝐺)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))) |
| 80 | 37, 77, 79 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))) |
| 81 | 7, 8, 9, 10 | gsummatr01lem4 22664 |
. . . . 5
⊢ ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛))) |
| 82 | 81 | mpteq2dva 5242 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))) = (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛)))) |
| 83 | 82 | oveq2d 7447 |
. . 3
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛))))) |
| 84 | 34, 80, 83 | 3eqtrd 2781 |
. 2
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛))))(+g‘𝐺)(𝐾(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝐾))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛))))) |
| 85 | 6, 11, 84 | 3eqtrd 2781 |
1
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐴𝑗) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅)) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄‘𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄‘𝑛))))) |