![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem13 | Structured version Visualization version GIF version |
Description: Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.) |
Ref | Expression |
---|---|
hdmap14lem12.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem12.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem12.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem12.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem12.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem12.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem12.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem12.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem12.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem12.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem12.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
hdmap14lem12.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem12.a | ⊢ 𝐴 = (Base‘𝑃) |
hdmap14lem12.o | ⊢ 0 = (0g‘𝑈) |
hdmap14lem12.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem12.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
Ref | Expression |
---|---|
hdmap14lem13 | ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem12.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap14lem12.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap14lem12.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap14lem12.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
5 | hdmap14lem12.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hdmap14lem12.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
7 | hdmap14lem12.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap14lem12.e | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
9 | hdmap14lem12.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
10 | hdmap14lem12.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | hdmap14lem12.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
12 | hdmap14lem12.p | . . 3 ⊢ 𝑃 = (Scalar‘𝐶) | |
13 | hdmap14lem12.a | . . 3 ⊢ 𝐴 = (Base‘𝑃) | |
14 | hdmap14lem12.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
15 | hdmap14lem12.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
16 | hdmap14lem12.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐴) | |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | hdmap14lem12 41213 | . 2 ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
18 | velsn 4644 | . . . . . 6 ⊢ (𝑦 ∈ { 0 } ↔ 𝑦 = 0 ) | |
19 | 1, 7, 10 | lcdlmod 40926 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ LMod) |
20 | eqid 2731 | . . . . . . . . . 10 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
21 | 12, 8, 13, 20 | lmodvs0 20738 | . . . . . . . . 9 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐴) → (𝐺 ∙ (0g‘𝐶)) = (0g‘𝐶)) |
22 | 19, 16, 21 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ∙ (0g‘𝐶)) = (0g‘𝐶)) |
23 | 1, 2, 14, 7, 20, 9, 10 | hdmapval0 41167 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆‘ 0 ) = (0g‘𝐶)) |
24 | 23 | oveq2d 7428 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ∙ (𝑆‘ 0 )) = (𝐺 ∙ (0g‘𝐶))) |
25 | 1, 2, 10 | dvhlmod 40444 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
26 | 5, 4, 6, 14 | lmodvs0 20738 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵) → (𝐹 · 0 ) = 0 ) |
27 | 25, 11, 26 | syl2anc 583 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 0 ) = 0 ) |
28 | 27 | fveq2d 6895 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆‘(𝐹 · 0 )) = (𝑆‘ 0 )) |
29 | 28, 23 | eqtrd 2771 | . . . . . . . 8 ⊢ (𝜑 → (𝑆‘(𝐹 · 0 )) = (0g‘𝐶)) |
30 | 22, 24, 29 | 3eqtr4rd 2782 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘(𝐹 · 0 )) = (𝐺 ∙ (𝑆‘ 0 ))) |
31 | oveq2 7420 | . . . . . . . . 9 ⊢ (𝑦 = 0 → (𝐹 · 𝑦) = (𝐹 · 0 )) | |
32 | 31 | fveq2d 6895 | . . . . . . . 8 ⊢ (𝑦 = 0 → (𝑆‘(𝐹 · 𝑦)) = (𝑆‘(𝐹 · 0 ))) |
33 | fveq2 6891 | . . . . . . . . 9 ⊢ (𝑦 = 0 → (𝑆‘𝑦) = (𝑆‘ 0 )) | |
34 | 33 | oveq2d 7428 | . . . . . . . 8 ⊢ (𝑦 = 0 → (𝐺 ∙ (𝑆‘𝑦)) = (𝐺 ∙ (𝑆‘ 0 ))) |
35 | 32, 34 | eqeq12d 2747 | . . . . . . 7 ⊢ (𝑦 = 0 → ((𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (𝑆‘(𝐹 · 0 )) = (𝐺 ∙ (𝑆‘ 0 )))) |
36 | 30, 35 | syl5ibrcom 246 | . . . . . 6 ⊢ (𝜑 → (𝑦 = 0 → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
37 | 18, 36 | biimtrid 241 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ { 0 } → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
38 | 37 | ralrimiv 3144 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ { 0 } (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))) |
39 | 38 | biantrud 531 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ∧ ∀𝑦 ∈ { 0 } (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))))) |
40 | ralunb 4191 | . . 3 ⊢ (∀𝑦 ∈ ((𝑉 ∖ { 0 }) ∪ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ∧ ∀𝑦 ∈ { 0 } (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) | |
41 | 39, 40 | bitr4di 289 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ ∀𝑦 ∈ ((𝑉 ∖ { 0 }) ∪ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
42 | 3, 14 | lmod0vcl 20733 | . . . 4 ⊢ (𝑈 ∈ LMod → 0 ∈ 𝑉) |
43 | difsnid 4813 | . . . 4 ⊢ ( 0 ∈ 𝑉 → ((𝑉 ∖ { 0 }) ∪ { 0 }) = 𝑉) | |
44 | 25, 42, 43 | 3syl 18 | . . 3 ⊢ (𝜑 → ((𝑉 ∖ { 0 }) ∪ { 0 }) = 𝑉) |
45 | 44 | raleqdv 3324 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ((𝑉 ∖ { 0 }) ∪ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
46 | 17, 41, 45 | 3bitrd 305 | 1 ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∖ cdif 3945 ∪ cun 3946 {csn 4628 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 Scalarcsca 17207 ·𝑠 cvsca 17208 0gc0g 17392 LModclmod 20702 HLchlt 38683 LHypclh 39318 DVecHcdvh 40412 LCDualclcd 40920 HDMapchdma 41126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-riotaBAD 38286 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-undef 8264 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-0g 17394 df-mre 17537 df-mrc 17538 df-acs 17540 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-cntz 19229 df-oppg 19258 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-drng 20585 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lvec 20946 df-lsatoms 38309 df-lshyp 38310 df-lcv 38352 df-lfl 38391 df-lkr 38419 df-ldual 38457 df-oposet 38509 df-ol 38511 df-oml 38512 df-covers 38599 df-ats 38600 df-atl 38631 df-cvlat 38655 df-hlat 38684 df-llines 38832 df-lplanes 38833 df-lvols 38834 df-lines 38835 df-psubsp 38837 df-pmap 38838 df-padd 39130 df-lhyp 39322 df-laut 39323 df-ldil 39438 df-ltrn 39439 df-trl 39493 df-tgrp 40077 df-tendo 40089 df-edring 40091 df-dveca 40337 df-disoa 40363 df-dvech 40413 df-dib 40473 df-dic 40507 df-dih 40563 df-doch 40682 df-djh 40729 df-lcdual 40921 df-mapd 40959 df-hvmap 41091 df-hdmap1 41127 df-hdmap 41128 |
This theorem is referenced by: hdmap14lem14 41215 |
Copyright terms: Public domain | W3C validator |