![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem13 | Structured version Visualization version GIF version |
Description: Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.) |
Ref | Expression |
---|---|
hdmap14lem12.h | β’ π» = (LHypβπΎ) |
hdmap14lem12.u | β’ π = ((DVecHβπΎ)βπ) |
hdmap14lem12.v | β’ π = (Baseβπ) |
hdmap14lem12.t | β’ Β· = ( Β·π βπ) |
hdmap14lem12.r | β’ π = (Scalarβπ) |
hdmap14lem12.b | β’ π΅ = (Baseβπ ) |
hdmap14lem12.c | β’ πΆ = ((LCDualβπΎ)βπ) |
hdmap14lem12.e | β’ β = ( Β·π βπΆ) |
hdmap14lem12.s | β’ π = ((HDMapβπΎ)βπ) |
hdmap14lem12.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmap14lem12.f | β’ (π β πΉ β π΅) |
hdmap14lem12.p | β’ π = (ScalarβπΆ) |
hdmap14lem12.a | β’ π΄ = (Baseβπ) |
hdmap14lem12.o | β’ 0 = (0gβπ) |
hdmap14lem12.x | β’ (π β π β (π β { 0 })) |
hdmap14lem12.g | β’ (π β πΊ β π΄) |
Ref | Expression |
---|---|
hdmap14lem13 | β’ (π β ((πβ(πΉ Β· π)) = (πΊ β (πβπ)) β βπ¦ β π (πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem12.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | hdmap14lem12.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
3 | hdmap14lem12.v | . . 3 β’ π = (Baseβπ) | |
4 | hdmap14lem12.t | . . 3 β’ Β· = ( Β·π βπ) | |
5 | hdmap14lem12.r | . . 3 β’ π = (Scalarβπ) | |
6 | hdmap14lem12.b | . . 3 β’ π΅ = (Baseβπ ) | |
7 | hdmap14lem12.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
8 | hdmap14lem12.e | . . 3 β’ β = ( Β·π βπΆ) | |
9 | hdmap14lem12.s | . . 3 β’ π = ((HDMapβπΎ)βπ) | |
10 | hdmap14lem12.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
11 | hdmap14lem12.f | . . 3 β’ (π β πΉ β π΅) | |
12 | hdmap14lem12.p | . . 3 β’ π = (ScalarβπΆ) | |
13 | hdmap14lem12.a | . . 3 β’ π΄ = (Baseβπ) | |
14 | hdmap14lem12.o | . . 3 β’ 0 = (0gβπ) | |
15 | hdmap14lem12.x | . . 3 β’ (π β π β (π β { 0 })) | |
16 | hdmap14lem12.g | . . 3 β’ (π β πΊ β π΄) | |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | hdmap14lem12 41053 | . 2 β’ (π β ((πβ(πΉ Β· π)) = (πΊ β (πβπ)) β βπ¦ β (π β { 0 })(πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)))) |
18 | velsn 4643 | . . . . . 6 β’ (π¦ β { 0 } β π¦ = 0 ) | |
19 | 1, 7, 10 | lcdlmod 40766 | . . . . . . . . 9 β’ (π β πΆ β LMod) |
20 | eqid 2730 | . . . . . . . . . 10 β’ (0gβπΆ) = (0gβπΆ) | |
21 | 12, 8, 13, 20 | lmodvs0 20650 | . . . . . . . . 9 β’ ((πΆ β LMod β§ πΊ β π΄) β (πΊ β (0gβπΆ)) = (0gβπΆ)) |
22 | 19, 16, 21 | syl2anc 582 | . . . . . . . 8 β’ (π β (πΊ β (0gβπΆ)) = (0gβπΆ)) |
23 | 1, 2, 14, 7, 20, 9, 10 | hdmapval0 41007 | . . . . . . . . 9 β’ (π β (πβ 0 ) = (0gβπΆ)) |
24 | 23 | oveq2d 7427 | . . . . . . . 8 β’ (π β (πΊ β (πβ 0 )) = (πΊ β (0gβπΆ))) |
25 | 1, 2, 10 | dvhlmod 40284 | . . . . . . . . . . 11 β’ (π β π β LMod) |
26 | 5, 4, 6, 14 | lmodvs0 20650 | . . . . . . . . . . 11 β’ ((π β LMod β§ πΉ β π΅) β (πΉ Β· 0 ) = 0 ) |
27 | 25, 11, 26 | syl2anc 582 | . . . . . . . . . 10 β’ (π β (πΉ Β· 0 ) = 0 ) |
28 | 27 | fveq2d 6894 | . . . . . . . . 9 β’ (π β (πβ(πΉ Β· 0 )) = (πβ 0 )) |
29 | 28, 23 | eqtrd 2770 | . . . . . . . 8 β’ (π β (πβ(πΉ Β· 0 )) = (0gβπΆ)) |
30 | 22, 24, 29 | 3eqtr4rd 2781 | . . . . . . 7 β’ (π β (πβ(πΉ Β· 0 )) = (πΊ β (πβ 0 ))) |
31 | oveq2 7419 | . . . . . . . . 9 β’ (π¦ = 0 β (πΉ Β· π¦) = (πΉ Β· 0 )) | |
32 | 31 | fveq2d 6894 | . . . . . . . 8 β’ (π¦ = 0 β (πβ(πΉ Β· π¦)) = (πβ(πΉ Β· 0 ))) |
33 | fveq2 6890 | . . . . . . . . 9 β’ (π¦ = 0 β (πβπ¦) = (πβ 0 )) | |
34 | 33 | oveq2d 7427 | . . . . . . . 8 β’ (π¦ = 0 β (πΊ β (πβπ¦)) = (πΊ β (πβ 0 ))) |
35 | 32, 34 | eqeq12d 2746 | . . . . . . 7 β’ (π¦ = 0 β ((πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)) β (πβ(πΉ Β· 0 )) = (πΊ β (πβ 0 )))) |
36 | 30, 35 | syl5ibrcom 246 | . . . . . 6 β’ (π β (π¦ = 0 β (πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)))) |
37 | 18, 36 | biimtrid 241 | . . . . 5 β’ (π β (π¦ β { 0 } β (πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)))) |
38 | 37 | ralrimiv 3143 | . . . 4 β’ (π β βπ¦ β { 0 } (πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦))) |
39 | 38 | biantrud 530 | . . 3 β’ (π β (βπ¦ β (π β { 0 })(πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)) β (βπ¦ β (π β { 0 })(πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)) β§ βπ¦ β { 0 } (πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦))))) |
40 | ralunb 4190 | . . 3 β’ (βπ¦ β ((π β { 0 }) βͺ { 0 })(πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)) β (βπ¦ β (π β { 0 })(πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)) β§ βπ¦ β { 0 } (πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)))) | |
41 | 39, 40 | bitr4di 288 | . 2 β’ (π β (βπ¦ β (π β { 0 })(πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)) β βπ¦ β ((π β { 0 }) βͺ { 0 })(πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)))) |
42 | 3, 14 | lmod0vcl 20645 | . . . 4 β’ (π β LMod β 0 β π) |
43 | difsnid 4812 | . . . 4 β’ ( 0 β π β ((π β { 0 }) βͺ { 0 }) = π) | |
44 | 25, 42, 43 | 3syl 18 | . . 3 β’ (π β ((π β { 0 }) βͺ { 0 }) = π) |
45 | 44 | raleqdv 3323 | . 2 β’ (π β (βπ¦ β ((π β { 0 }) βͺ { 0 })(πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)) β βπ¦ β π (πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)))) |
46 | 17, 41, 45 | 3bitrd 304 | 1 β’ (π β ((πβ(πΉ Β· π)) = (πΊ β (πβπ)) β βπ¦ β π (πβ(πΉ Β· π¦)) = (πΊ β (πβπ¦)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 β cdif 3944 βͺ cun 3945 {csn 4627 βcfv 6542 (class class class)co 7411 Basecbs 17148 Scalarcsca 17204 Β·π cvsca 17205 0gc0g 17389 LModclmod 20614 HLchlt 38523 LHypclh 39158 DVecHcdvh 40252 LCDualclcd 40760 HDMapchdma 40966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-riotaBAD 38126 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-undef 8260 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-0g 17391 df-mre 17534 df-mrc 17535 df-acs 17537 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-cntz 19222 df-oppg 19251 df-lsm 19545 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-drng 20502 df-lmod 20616 df-lss 20687 df-lsp 20727 df-lvec 20858 df-lsatoms 38149 df-lshyp 38150 df-lcv 38192 df-lfl 38231 df-lkr 38259 df-ldual 38297 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-llines 38672 df-lplanes 38673 df-lvols 38674 df-lines 38675 df-psubsp 38677 df-pmap 38678 df-padd 38970 df-lhyp 39162 df-laut 39163 df-ldil 39278 df-ltrn 39279 df-trl 39333 df-tgrp 39917 df-tendo 39929 df-edring 39931 df-dveca 40177 df-disoa 40203 df-dvech 40253 df-dib 40313 df-dic 40347 df-dih 40403 df-doch 40522 df-djh 40569 df-lcdual 40761 df-mapd 40799 df-hvmap 40931 df-hdmap1 40967 df-hdmap 40968 |
This theorem is referenced by: hdmap14lem14 41055 |
Copyright terms: Public domain | W3C validator |