Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem13 | Structured version Visualization version GIF version |
Description: Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.) |
Ref | Expression |
---|---|
hdmap14lem12.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem12.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem12.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem12.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem12.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem12.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem12.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem12.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem12.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem12.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem12.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
hdmap14lem12.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem12.a | ⊢ 𝐴 = (Base‘𝑃) |
hdmap14lem12.o | ⊢ 0 = (0g‘𝑈) |
hdmap14lem12.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem12.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
Ref | Expression |
---|---|
hdmap14lem13 | ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem12.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap14lem12.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap14lem12.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap14lem12.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
5 | hdmap14lem12.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hdmap14lem12.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
7 | hdmap14lem12.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap14lem12.e | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
9 | hdmap14lem12.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
10 | hdmap14lem12.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | hdmap14lem12.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
12 | hdmap14lem12.p | . . 3 ⊢ 𝑃 = (Scalar‘𝐶) | |
13 | hdmap14lem12.a | . . 3 ⊢ 𝐴 = (Base‘𝑃) | |
14 | hdmap14lem12.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
15 | hdmap14lem12.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
16 | hdmap14lem12.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐴) | |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | hdmap14lem12 39893 | . 2 ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
18 | velsn 4577 | . . . . . 6 ⊢ (𝑦 ∈ { 0 } ↔ 𝑦 = 0 ) | |
19 | 1, 7, 10 | lcdlmod 39606 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ LMod) |
20 | eqid 2738 | . . . . . . . . . 10 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
21 | 12, 8, 13, 20 | lmodvs0 20157 | . . . . . . . . 9 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐴) → (𝐺 ∙ (0g‘𝐶)) = (0g‘𝐶)) |
22 | 19, 16, 21 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ∙ (0g‘𝐶)) = (0g‘𝐶)) |
23 | 1, 2, 14, 7, 20, 9, 10 | hdmapval0 39847 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆‘ 0 ) = (0g‘𝐶)) |
24 | 23 | oveq2d 7291 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ∙ (𝑆‘ 0 )) = (𝐺 ∙ (0g‘𝐶))) |
25 | 1, 2, 10 | dvhlmod 39124 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
26 | 5, 4, 6, 14 | lmodvs0 20157 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵) → (𝐹 · 0 ) = 0 ) |
27 | 25, 11, 26 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 0 ) = 0 ) |
28 | 27 | fveq2d 6778 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆‘(𝐹 · 0 )) = (𝑆‘ 0 )) |
29 | 28, 23 | eqtrd 2778 | . . . . . . . 8 ⊢ (𝜑 → (𝑆‘(𝐹 · 0 )) = (0g‘𝐶)) |
30 | 22, 24, 29 | 3eqtr4rd 2789 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘(𝐹 · 0 )) = (𝐺 ∙ (𝑆‘ 0 ))) |
31 | oveq2 7283 | . . . . . . . . 9 ⊢ (𝑦 = 0 → (𝐹 · 𝑦) = (𝐹 · 0 )) | |
32 | 31 | fveq2d 6778 | . . . . . . . 8 ⊢ (𝑦 = 0 → (𝑆‘(𝐹 · 𝑦)) = (𝑆‘(𝐹 · 0 ))) |
33 | fveq2 6774 | . . . . . . . . 9 ⊢ (𝑦 = 0 → (𝑆‘𝑦) = (𝑆‘ 0 )) | |
34 | 33 | oveq2d 7291 | . . . . . . . 8 ⊢ (𝑦 = 0 → (𝐺 ∙ (𝑆‘𝑦)) = (𝐺 ∙ (𝑆‘ 0 ))) |
35 | 32, 34 | eqeq12d 2754 | . . . . . . 7 ⊢ (𝑦 = 0 → ((𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (𝑆‘(𝐹 · 0 )) = (𝐺 ∙ (𝑆‘ 0 )))) |
36 | 30, 35 | syl5ibrcom 246 | . . . . . 6 ⊢ (𝜑 → (𝑦 = 0 → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
37 | 18, 36 | syl5bi 241 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ { 0 } → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
38 | 37 | ralrimiv 3102 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ { 0 } (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))) |
39 | 38 | biantrud 532 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ∧ ∀𝑦 ∈ { 0 } (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))))) |
40 | ralunb 4125 | . . 3 ⊢ (∀𝑦 ∈ ((𝑉 ∖ { 0 }) ∪ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ∧ ∀𝑦 ∈ { 0 } (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) | |
41 | 39, 40 | bitr4di 289 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ ∀𝑦 ∈ ((𝑉 ∖ { 0 }) ∪ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
42 | 3, 14 | lmod0vcl 20152 | . . . 4 ⊢ (𝑈 ∈ LMod → 0 ∈ 𝑉) |
43 | difsnid 4743 | . . . 4 ⊢ ( 0 ∈ 𝑉 → ((𝑉 ∖ { 0 }) ∪ { 0 }) = 𝑉) | |
44 | 25, 42, 43 | 3syl 18 | . . 3 ⊢ (𝜑 → ((𝑉 ∖ { 0 }) ∪ { 0 }) = 𝑉) |
45 | 44 | raleqdv 3348 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ((𝑉 ∖ { 0 }) ∪ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
46 | 17, 41, 45 | 3bitrd 305 | 1 ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∖ cdif 3884 ∪ cun 3885 {csn 4561 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 0gc0g 17150 LModclmod 20123 HLchlt 37364 LHypclh 37998 DVecHcdvh 39092 LCDualclcd 39600 HDMapchdma 39806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-undef 8089 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-mre 17295 df-mrc 17296 df-acs 17298 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-oppg 18950 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-lsatoms 36990 df-lshyp 36991 df-lcv 37033 df-lfl 37072 df-lkr 37100 df-ldual 37138 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tgrp 38757 df-tendo 38769 df-edring 38771 df-dveca 39017 df-disoa 39043 df-dvech 39093 df-dib 39153 df-dic 39187 df-dih 39243 df-doch 39362 df-djh 39409 df-lcdual 39601 df-mapd 39639 df-hvmap 39771 df-hdmap1 39807 df-hdmap 39808 |
This theorem is referenced by: hdmap14lem14 39895 |
Copyright terms: Public domain | W3C validator |