| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.) |
| Ref | Expression |
|---|---|
| hdmap14lem12.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap14lem12.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap14lem12.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap14lem12.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| hdmap14lem12.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hdmap14lem12.b | ⊢ 𝐵 = (Base‘𝑅) |
| hdmap14lem12.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap14lem12.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
| hdmap14lem12.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmap14lem12.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap14lem12.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| hdmap14lem12.p | ⊢ 𝑃 = (Scalar‘𝐶) |
| hdmap14lem12.a | ⊢ 𝐴 = (Base‘𝑃) |
| hdmap14lem12.o | ⊢ 0 = (0g‘𝑈) |
| hdmap14lem12.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap14lem12.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| hdmap14lem13 | ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap14lem12.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap14lem12.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmap14lem12.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmap14lem12.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 5 | hdmap14lem12.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 6 | hdmap14lem12.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | hdmap14lem12.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | hdmap14lem12.e | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
| 9 | hdmap14lem12.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 10 | hdmap14lem12.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 11 | hdmap14lem12.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 12 | hdmap14lem12.p | . . 3 ⊢ 𝑃 = (Scalar‘𝐶) | |
| 13 | hdmap14lem12.a | . . 3 ⊢ 𝐴 = (Base‘𝑃) | |
| 14 | hdmap14lem12.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 15 | hdmap14lem12.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 16 | hdmap14lem12.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐴) | |
| 17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | hdmap14lem12 41858 | . 2 ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
| 18 | velsn 4593 | . . . . . 6 ⊢ (𝑦 ∈ { 0 } ↔ 𝑦 = 0 ) | |
| 19 | 1, 7, 10 | lcdlmod 41571 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 20 | eqid 2729 | . . . . . . . . . 10 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 21 | 12, 8, 13, 20 | lmodvs0 20799 | . . . . . . . . 9 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐴) → (𝐺 ∙ (0g‘𝐶)) = (0g‘𝐶)) |
| 22 | 19, 16, 21 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ∙ (0g‘𝐶)) = (0g‘𝐶)) |
| 23 | 1, 2, 14, 7, 20, 9, 10 | hdmapval0 41812 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆‘ 0 ) = (0g‘𝐶)) |
| 24 | 23 | oveq2d 7365 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ∙ (𝑆‘ 0 )) = (𝐺 ∙ (0g‘𝐶))) |
| 25 | 1, 2, 10 | dvhlmod 41089 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 26 | 5, 4, 6, 14 | lmodvs0 20799 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵) → (𝐹 · 0 ) = 0 ) |
| 27 | 25, 11, 26 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 0 ) = 0 ) |
| 28 | 27 | fveq2d 6826 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆‘(𝐹 · 0 )) = (𝑆‘ 0 )) |
| 29 | 28, 23 | eqtrd 2764 | . . . . . . . 8 ⊢ (𝜑 → (𝑆‘(𝐹 · 0 )) = (0g‘𝐶)) |
| 30 | 22, 24, 29 | 3eqtr4rd 2775 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘(𝐹 · 0 )) = (𝐺 ∙ (𝑆‘ 0 ))) |
| 31 | oveq2 7357 | . . . . . . . . 9 ⊢ (𝑦 = 0 → (𝐹 · 𝑦) = (𝐹 · 0 )) | |
| 32 | 31 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝑦 = 0 → (𝑆‘(𝐹 · 𝑦)) = (𝑆‘(𝐹 · 0 ))) |
| 33 | fveq2 6822 | . . . . . . . . 9 ⊢ (𝑦 = 0 → (𝑆‘𝑦) = (𝑆‘ 0 )) | |
| 34 | 33 | oveq2d 7365 | . . . . . . . 8 ⊢ (𝑦 = 0 → (𝐺 ∙ (𝑆‘𝑦)) = (𝐺 ∙ (𝑆‘ 0 ))) |
| 35 | 32, 34 | eqeq12d 2745 | . . . . . . 7 ⊢ (𝑦 = 0 → ((𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (𝑆‘(𝐹 · 0 )) = (𝐺 ∙ (𝑆‘ 0 )))) |
| 36 | 30, 35 | syl5ibrcom 247 | . . . . . 6 ⊢ (𝜑 → (𝑦 = 0 → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
| 37 | 18, 36 | biimtrid 242 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ { 0 } → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
| 38 | 37 | ralrimiv 3120 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ { 0 } (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))) |
| 39 | 38 | biantrud 531 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ∧ ∀𝑦 ∈ { 0 } (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))))) |
| 40 | ralunb 4148 | . . 3 ⊢ (∀𝑦 ∈ ((𝑉 ∖ { 0 }) ∪ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ∧ ∀𝑦 ∈ { 0 } (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) | |
| 41 | 39, 40 | bitr4di 289 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ ∀𝑦 ∈ ((𝑉 ∖ { 0 }) ∪ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
| 42 | 3, 14 | lmod0vcl 20794 | . . . 4 ⊢ (𝑈 ∈ LMod → 0 ∈ 𝑉) |
| 43 | difsnid 4761 | . . . 4 ⊢ ( 0 ∈ 𝑉 → ((𝑉 ∖ { 0 }) ∪ { 0 }) = 𝑉) | |
| 44 | 25, 42, 43 | 3syl 18 | . . 3 ⊢ (𝜑 → ((𝑉 ∖ { 0 }) ∪ { 0 }) = 𝑉) |
| 45 | 44 | raleqdv 3289 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ((𝑉 ∖ { 0 }) ∪ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
| 46 | 17, 41, 45 | 3bitrd 305 | 1 ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3900 ∪ cun 3901 {csn 4577 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 LModclmod 20763 HLchlt 39329 LHypclh 39963 DVecHcdvh 41057 LCDualclcd 41565 HDMapchdma 41771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-riotaBAD 38932 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-undef 8206 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cntz 19196 df-oppg 19225 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-nzr 20398 df-rlreg 20579 df-domn 20580 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lvec 21007 df-lsatoms 38955 df-lshyp 38956 df-lcv 38998 df-lfl 39037 df-lkr 39065 df-ldual 39103 df-oposet 39155 df-ol 39157 df-oml 39158 df-covers 39245 df-ats 39246 df-atl 39277 df-cvlat 39301 df-hlat 39330 df-llines 39477 df-lplanes 39478 df-lvols 39479 df-lines 39480 df-psubsp 39482 df-pmap 39483 df-padd 39775 df-lhyp 39967 df-laut 39968 df-ldil 40083 df-ltrn 40084 df-trl 40138 df-tgrp 40722 df-tendo 40734 df-edring 40736 df-dveca 40982 df-disoa 41008 df-dvech 41058 df-dib 41118 df-dic 41152 df-dih 41208 df-doch 41327 df-djh 41374 df-lcdual 41566 df-mapd 41604 df-hvmap 41736 df-hdmap1 41772 df-hdmap 41773 |
| This theorem is referenced by: hdmap14lem14 41860 |
| Copyright terms: Public domain | W3C validator |