Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdifioo Structured version   Visualization version   GIF version

Theorem iccdifioo 43760
Description: If the open inverval is removed from the closed interval, only the bounds are left. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iccdifioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵})

Proof of Theorem iccdifioo
StepHypRef Expression
1 prunioo 13399 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2 uncom 4114 . . . 4 ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))
31, 2eqtr3di 2792 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴[,]𝐵) = ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
43difeq1d 4082 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)))
5 difun2 4441 . . 3 (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵))
65a1i 11 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)))
7 incom 4162 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ({𝐴, 𝐵} ∩ (𝐴(,)𝐵))
8 iooinlbub 43746 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅
97, 8eqtr3i 2767 . . . . 5 ({𝐴, 𝐵} ∩ (𝐴(,)𝐵)) = ∅
10 disj3 4414 . . . . 5 (({𝐴, 𝐵} ∩ (𝐴(,)𝐵)) = ∅ ↔ {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)))
119, 10mpbi 229 . . . 4 {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵))
1211eqcomi 2746 . . 3 ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵}
1312a1i 11 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵})
144, 6, 133eqtrd 2781 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  cdif 3908  cun 3909  cin 3910  c0 4283  {cpr 4589   class class class wbr 5106  (class class class)co 7358  *cxr 11189  cle 11191  (,)cioo 13265  [,]cicc 13268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129  ax-pre-sup 11130
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-sup 9379  df-inf 9380  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-div 11814  df-nn 12155  df-n0 12415  df-z 12501  df-uz 12765  df-q 12875  df-ioo 13269  df-ico 13271  df-icc 13272
This theorem is referenced by:  ibliooicc  44219
  Copyright terms: Public domain W3C validator