Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  docavalN Structured version   Visualization version   GIF version

Theorem docavalN 40297
Description: Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
docaval.j ∨ = (joinβ€˜πΎ)
docaval.m ∧ = (meetβ€˜πΎ)
docaval.o βŠ₯ = (ocβ€˜πΎ)
docaval.h 𝐻 = (LHypβ€˜πΎ)
docaval.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
docaval.i 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
docaval.n 𝑁 = ((ocAβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
docavalN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑇) β†’ (π‘β€˜π‘‹) = (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š)))
Distinct variable groups:   𝑧,𝐾   𝑧,𝐼   𝑧,π‘Š   𝑧,𝑇   𝑧,𝑋
Allowed substitution hints:   𝐻(𝑧)   ∨ (𝑧)   ∧ (𝑧)   𝑁(𝑧)   βŠ₯ (𝑧)

Proof of Theorem docavalN
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 docaval.j . . . . 5 ∨ = (joinβ€˜πΎ)
2 docaval.m . . . . 5 ∧ = (meetβ€˜πΎ)
3 docaval.o . . . . 5 βŠ₯ = (ocβ€˜πΎ)
4 docaval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
5 docaval.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
6 docaval.i . . . . 5 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
7 docaval.n . . . . 5 𝑁 = ((ocAβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7docafvalN 40296 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑁 = (π‘₯ ∈ 𝒫 𝑇 ↦ (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š))))
98adantr 479 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑇) β†’ 𝑁 = (π‘₯ ∈ 𝒫 𝑇 ↦ (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š))))
109fveq1d 6892 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑇) β†’ (π‘β€˜π‘‹) = ((π‘₯ ∈ 𝒫 𝑇 ↦ (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š)))β€˜π‘‹))
115fvexi 6904 . . . . . 6 𝑇 ∈ V
1211elpw2 5344 . . . . 5 (𝑋 ∈ 𝒫 𝑇 ↔ 𝑋 βŠ† 𝑇)
1312biimpri 227 . . . 4 (𝑋 βŠ† 𝑇 β†’ 𝑋 ∈ 𝒫 𝑇)
1413adantl 480 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑇) β†’ 𝑋 ∈ 𝒫 𝑇)
15 fvex 6903 . . 3 (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š)) ∈ V
16 sseq1 4006 . . . . . . . . . 10 (π‘₯ = 𝑋 β†’ (π‘₯ βŠ† 𝑧 ↔ 𝑋 βŠ† 𝑧))
1716rabbidv 3438 . . . . . . . . 9 (π‘₯ = 𝑋 β†’ {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧} = {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧})
1817inteqd 4954 . . . . . . . 8 (π‘₯ = 𝑋 β†’ ∩ {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧} = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧})
1918fveq2d 6894 . . . . . . 7 (π‘₯ = 𝑋 β†’ (β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧}) = (β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧}))
2019fveq2d 6894 . . . . . 6 (π‘₯ = 𝑋 β†’ ( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧})) = ( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧})))
2120oveq1d 7426 . . . . 5 (π‘₯ = 𝑋 β†’ (( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) = (( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)))
2221fvoveq1d 7433 . . . 4 (π‘₯ = 𝑋 β†’ (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š)) = (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š)))
23 eqid 2730 . . . 4 (π‘₯ ∈ 𝒫 𝑇 ↦ (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š))) = (π‘₯ ∈ 𝒫 𝑇 ↦ (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š)))
2422, 23fvmptg 6995 . . 3 ((𝑋 ∈ 𝒫 𝑇 ∧ (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š)) ∈ V) β†’ ((π‘₯ ∈ 𝒫 𝑇 ↦ (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š)))β€˜π‘‹) = (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š)))
2514, 15, 24sylancl 584 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑇) β†’ ((π‘₯ ∈ 𝒫 𝑇 ↦ (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ π‘₯ βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š)))β€˜π‘‹) = (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š)))
2610, 25eqtrd 2770 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑇) β†’ (π‘β€˜π‘‹) = (πΌβ€˜((( βŠ₯ β€˜(β—‘πΌβ€˜βˆ© {𝑧 ∈ ran 𝐼 ∣ 𝑋 βŠ† 𝑧})) ∨ ( βŠ₯ β€˜π‘Š)) ∧ π‘Š)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  {crab 3430  Vcvv 3472   βŠ† wss 3947  π’« cpw 4601  βˆ© cint 4949   ↦ cmpt 5230  β—‘ccnv 5674  ran crn 5676  β€˜cfv 6542  (class class class)co 7411  occoc 17209  joincjn 18268  meetcmee 18269  HLchlt 38523  LHypclh 39158  LTrncltrn 39275  DIsoAcdia 40202  ocAcocaN 40293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-docaN 40294
This theorem is referenced by:  docaclN  40298  diaocN  40299
  Copyright terms: Public domain W3C validator