Step | Hyp | Ref
| Expression |
1 | | docaval.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
2 | | docaval.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
3 | | docaval.o |
. . . . 5
⊢ ⊥ =
(oc‘𝐾) |
4 | | docaval.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | docaval.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
6 | | docaval.i |
. . . . 5
⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
7 | | docaval.n |
. . . . 5
⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) |
8 | 1, 2, 3, 4, 5, 6, 7 | docafvalN 39136 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))) |
9 | 8 | adantr 481 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))) |
10 | 9 | fveq1d 6776 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (𝑁‘𝑋) = ((𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))‘𝑋)) |
11 | 5 | fvexi 6788 |
. . . . . 6
⊢ 𝑇 ∈ V |
12 | 11 | elpw2 5269 |
. . . . 5
⊢ (𝑋 ∈ 𝒫 𝑇 ↔ 𝑋 ⊆ 𝑇) |
13 | 12 | biimpri 227 |
. . . 4
⊢ (𝑋 ⊆ 𝑇 → 𝑋 ∈ 𝒫 𝑇) |
14 | 13 | adantl 482 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → 𝑋 ∈ 𝒫 𝑇) |
15 | | fvex 6787 |
. . 3
⊢ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) ∈ V |
16 | | sseq1 3946 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝑥 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑧)) |
17 | 16 | rabbidv 3414 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧} = {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
18 | 17 | inteqd 4884 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧} = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
19 | 18 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧}) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) |
20 | 19 | fveq2d 6778 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) = ( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) |
21 | 20 | oveq1d 7290 |
. . . . 5
⊢ (𝑥 = 𝑋 → (( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) = (( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊))) |
22 | 21 | fvoveq1d 7297 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
23 | | eqid 2738 |
. . . 4
⊢ (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
24 | 22, 23 | fvmptg 6873 |
. . 3
⊢ ((𝑋 ∈ 𝒫 𝑇 ∧ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) ∈ V) → ((𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))‘𝑋) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
25 | 14, 15, 24 | sylancl 586 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → ((𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))‘𝑋) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
26 | 10, 25 | eqtrd 2778 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (𝑁‘𝑋) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |