Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  docavalN Structured version   Visualization version   GIF version

Theorem docavalN 41080
Description: Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
docaval.j = (join‘𝐾)
docaval.m = (meet‘𝐾)
docaval.o = (oc‘𝐾)
docaval.h 𝐻 = (LHyp‘𝐾)
docaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
docaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
docaval.n 𝑁 = ((ocA‘𝐾)‘𝑊)
Assertion
Ref Expression
docavalN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝑁𝑋) = (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ( 𝑊)) 𝑊)))
Distinct variable groups:   𝑧,𝐾   𝑧,𝐼   𝑧,𝑊   𝑧,𝑇   𝑧,𝑋
Allowed substitution hints:   𝐻(𝑧)   (𝑧)   (𝑧)   𝑁(𝑧)   (𝑧)

Proof of Theorem docavalN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 docaval.j . . . . 5 = (join‘𝐾)
2 docaval.m . . . . 5 = (meet‘𝐾)
3 docaval.o . . . . 5 = (oc‘𝐾)
4 docaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 docaval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 docaval.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
7 docaval.n . . . . 5 𝑁 = ((ocA‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7docafvalN 41079 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
98adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
109fveq1d 6922 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝑁𝑋) = ((𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊)))‘𝑋))
115fvexi 6934 . . . . . 6 𝑇 ∈ V
1211elpw2 5352 . . . . 5 (𝑋 ∈ 𝒫 𝑇𝑋𝑇)
1312biimpri 228 . . . 4 (𝑋𝑇𝑋 ∈ 𝒫 𝑇)
1413adantl 481 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → 𝑋 ∈ 𝒫 𝑇)
15 fvex 6933 . . 3 (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ( 𝑊)) 𝑊)) ∈ V
16 sseq1 4034 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝑧𝑋𝑧))
1716rabbidv 3451 . . . . . . . . 9 (𝑥 = 𝑋 → {𝑧 ∈ ran 𝐼𝑥𝑧} = {𝑧 ∈ ran 𝐼𝑋𝑧})
1817inteqd 4975 . . . . . . . 8 (𝑥 = 𝑋 {𝑧 ∈ ran 𝐼𝑥𝑧} = {𝑧 ∈ ran 𝐼𝑋𝑧})
1918fveq2d 6924 . . . . . . 7 (𝑥 = 𝑋 → (𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧}) = (𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧}))
2019fveq2d 6924 . . . . . 6 (𝑥 = 𝑋 → ( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) = ( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})))
2120oveq1d 7463 . . . . 5 (𝑥 = 𝑋 → (( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) = (( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ( 𝑊)))
2221fvoveq1d 7470 . . . 4 (𝑥 = 𝑋 → (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊)) = (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ( 𝑊)) 𝑊)))
23 eqid 2740 . . . 4 (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))) = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊)))
2422, 23fvmptg 7027 . . 3 ((𝑋 ∈ 𝒫 𝑇 ∧ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ( 𝑊)) 𝑊)) ∈ V) → ((𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊)))‘𝑋) = (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ( 𝑊)) 𝑊)))
2514, 15, 24sylancl 585 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → ((𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊)))‘𝑋) = (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ( 𝑊)) 𝑊)))
2610, 25eqtrd 2780 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (𝑁𝑋) = (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑋𝑧})) ( 𝑊)) 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622   cint 4970  cmpt 5249  ccnv 5699  ran crn 5701  cfv 6573  (class class class)co 7448  occoc 17319  joincjn 18381  meetcmee 18382  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  DIsoAcdia 40985  ocAcocaN 41076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-docaN 41077
This theorem is referenced by:  docaclN  41081  diaocN  41082
  Copyright terms: Public domain W3C validator