MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmet Structured version   Visualization version   GIF version

Theorem cncfmet 22990
Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
cncfmet.1 𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
cncfmet.2 𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
cncfmet.3 𝐽 = (MetOpen‘𝐶)
cncfmet.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
cncfmet ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐽 Cn 𝐾))

Proof of Theorem cncfmet
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 791 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐴 ⊆ ℂ)
2 simprl 787 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑥𝐴)
3 simprr 789 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤𝐴)
4 cncfmet.1 . . . . . . . . . . . . . . . 16 𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
54oveqi 6855 . . . . . . . . . . . . . . 15 (𝑥𝐶𝑤) = (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑤)
6 ovres 6998 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑤𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑤) = (𝑥(abs ∘ − )𝑤))
75, 6syl5eq 2811 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑤𝐴) → (𝑥𝐶𝑤) = (𝑥(abs ∘ − )𝑤))
87ad2ant2l 752 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥𝐶𝑤) = (𝑥(abs ∘ − )𝑤))
9 ssel2 3756 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → 𝑥 ∈ ℂ)
10 ssel2 3756 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℂ ∧ 𝑤𝐴) → 𝑤 ∈ ℂ)
11 eqid 2765 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
1211cnmetdval 22853 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
139, 10, 12syl2an 589 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
148, 13eqtrd 2799 . . . . . . . . . . . 12 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥𝐶𝑤) = (abs‘(𝑥𝑤)))
151, 2, 1, 3, 14syl22anc 867 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑥𝐶𝑤) = (abs‘(𝑥𝑤)))
1615breq1d 4819 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑥𝐶𝑤) < 𝑧 ↔ (abs‘(𝑥𝑤)) < 𝑧))
17 ffvelrn 6547 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ 𝐵)
1817ad2ant2lr 754 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑥) ∈ 𝐵)
19 ffvelrn 6547 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝑤𝐴) → (𝑓𝑤) ∈ 𝐵)
2019ad2ant2l 752 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑤) ∈ 𝐵)
21 cncfmet.2 . . . . . . . . . . . . . . 15 𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
2221oveqi 6855 . . . . . . . . . . . . . 14 ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)((abs ∘ − ) ↾ (𝐵 × 𝐵))(𝑓𝑤))
23 ovres 6998 . . . . . . . . . . . . . 14 (((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑤) ∈ 𝐵) → ((𝑓𝑥)((abs ∘ − ) ↾ (𝐵 × 𝐵))(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
2422, 23syl5eq 2811 . . . . . . . . . . . . 13 (((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑤) ∈ 𝐵) → ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
2518, 20, 24syl2anc 579 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
26 simpllr 793 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐵 ⊆ ℂ)
2726, 18sseldd 3762 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑥) ∈ ℂ)
2826, 20sseldd 3762 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑤) ∈ ℂ)
2911cnmetdval 22853 . . . . . . . . . . . . 13 (((𝑓𝑥) ∈ ℂ ∧ (𝑓𝑤) ∈ ℂ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3027, 28, 29syl2anc 579 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3125, 30eqtrd 2799 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)𝐷(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3231breq1d 4819 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦 ↔ (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))
3316, 32imbi12d 335 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3433anassrs 459 . . . . . . . 8 (((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑤𝐴) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3534ralbidva 3132 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3635rexbidv 3199 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3736ralbidv 3133 . . . . 5 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3837ralbidva 3132 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3938pm5.32da 574 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))))
40 cnxmet 22855 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
41 xmetres2 22445 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
4240, 41mpan 681 . . . . 5 (𝐴 ⊆ ℂ → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
434, 42syl5eqel 2848 . . . 4 (𝐴 ⊆ ℂ → 𝐶 ∈ (∞Met‘𝐴))
44 xmetres2 22445 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
4540, 44mpan 681 . . . . 5 (𝐵 ⊆ ℂ → ((abs ∘ − ) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
4621, 45syl5eqel 2848 . . . 4 (𝐵 ⊆ ℂ → 𝐷 ∈ (∞Met‘𝐵))
47 cncfmet.3 . . . . 5 𝐽 = (MetOpen‘𝐶)
48 cncfmet.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
4947, 48metcn 22627 . . . 4 ((𝐶 ∈ (∞Met‘𝐴) ∧ 𝐷 ∈ (∞Met‘𝐵)) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
5043, 46, 49syl2an 589 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
51 elcncf 22971 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))))
5239, 50, 513bitr4rd 303 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) ↔ 𝑓 ∈ (𝐽 Cn 𝐾)))
5352eqrdv 2763 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056  wss 3732   class class class wbr 4809   × cxp 5275  cres 5279  ccom 5281  wf 6064  cfv 6068  (class class class)co 6842  cc 10187   < clt 10328  cmin 10520  +crp 12028  abscabs 14259  ∞Metcxmet 20004  MetOpencmopn 20009   Cn ccn 21308  cnccncf 22958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-topgen 16370  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-top 20978  df-topon 20995  df-bases 21030  df-cn 21311  df-cnp 21312  df-cncf 22960
This theorem is referenced by:  cncfcn  22991  evthicc  23517  cncfres  33986
  Copyright terms: Public domain W3C validator