Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ulmf2 | Structured version Visualization version GIF version |
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015.) |
Ref | Expression |
---|---|
ulmf2 | ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmpm 25447 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) | |
2 | ovex 7288 | . . . . . 6 ⊢ (ℂ ↑m 𝑆) ∈ V | |
3 | zex 12258 | . . . . . 6 ⊢ ℤ ∈ V | |
4 | 2, 3 | elpm2 8620 | . . . . 5 ⊢ (𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ↔ (𝐹:dom 𝐹⟶(ℂ ↑m 𝑆) ∧ dom 𝐹 ⊆ ℤ)) |
5 | 4 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆)) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆)) |
7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆)) |
8 | fndm 6520 | . . . 4 ⊢ (𝐹 Fn 𝑍 → dom 𝐹 = 𝑍) | |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → dom 𝐹 = 𝑍) |
10 | 9 | feq2d 6570 | . 2 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → (𝐹:dom 𝐹⟶(ℂ ↑m 𝑆) ↔ 𝐹:𝑍⟶(ℂ ↑m 𝑆))) |
11 | 7, 10 | mpbid 231 | 1 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ↑pm cpm 8574 ℂcc 10800 ℤcz 12249 ⇝𝑢culm 25440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-pm 8576 df-neg 11138 df-z 12250 df-uz 12512 df-ulm 25441 |
This theorem is referenced by: ulmdvlem1 25464 ulmdvlem2 25465 ulmdvlem3 25466 mtestbdd 25469 mbfulm 25470 iblulm 25471 itgulm 25472 itgulm2 25473 lgamgulm2 26090 lgamcvglem 26094 |
Copyright terms: Public domain | W3C validator |