MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmf2 Structured version   Visualization version   GIF version

Theorem ulmf2 25887
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015.)
Assertion
Ref Expression
ulmf2 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))

Proof of Theorem ulmf2
StepHypRef Expression
1 ulmpm 25886 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ))
2 ovex 7438 . . . . . 6 (ℂ ↑m 𝑆) ∈ V
3 zex 12563 . . . . . 6 ℤ ∈ V
42, 3elpm2 8864 . . . . 5 (𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ↔ (𝐹:dom 𝐹⟶(ℂ ↑m 𝑆) ∧ dom 𝐹 ⊆ ℤ))
54simplbi 498 . . . 4 (𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆))
61, 5syl 17 . . 3 (𝐹(⇝𝑢𝑆)𝐺𝐹:dom 𝐹⟶(ℂ ↑m 𝑆))
76adantl 482 . 2 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆))
8 fndm 6649 . . . 4 (𝐹 Fn 𝑍 → dom 𝐹 = 𝑍)
98adantr 481 . . 3 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → dom 𝐹 = 𝑍)
109feq2d 6700 . 2 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → (𝐹:dom 𝐹⟶(ℂ ↑m 𝑆) ↔ 𝐹:𝑍⟶(ℂ ↑m 𝑆)))
117, 10mpbid 231 1 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wss 3947   class class class wbr 5147  dom cdm 5675   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7405  m cmap 8816  pm cpm 8817  cc 11104  cz 12554  𝑢culm 25879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-pm 8819  df-neg 11443  df-z 12555  df-uz 12819  df-ulm 25880
This theorem is referenced by:  ulmdvlem1  25903  ulmdvlem2  25904  ulmdvlem3  25905  mtestbdd  25908  mbfulm  25909  iblulm  25910  itgulm  25911  itgulm2  25912  lgamgulm2  26529  lgamcvglem  26533
  Copyright terms: Public domain W3C validator