| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmf2 | Structured version Visualization version GIF version | ||
| Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| Ref | Expression |
|---|---|
| ulmf2 | ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmpm 26268 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) | |
| 2 | ovex 7402 | . . . . . 6 ⊢ (ℂ ↑m 𝑆) ∈ V | |
| 3 | zex 12514 | . . . . . 6 ⊢ ℤ ∈ V | |
| 4 | 2, 3 | elpm2 8824 | . . . . 5 ⊢ (𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ↔ (𝐹:dom 𝐹⟶(ℂ ↑m 𝑆) ∧ dom 𝐹 ⊆ ℤ)) |
| 5 | 4 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆)) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆)) |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆)) |
| 8 | fndm 6603 | . . . 4 ⊢ (𝐹 Fn 𝑍 → dom 𝐹 = 𝑍) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → dom 𝐹 = 𝑍) |
| 10 | 9 | feq2d 6654 | . 2 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → (𝐹:dom 𝐹⟶(ℂ ↑m 𝑆) ↔ 𝐹:𝑍⟶(ℂ ↑m 𝑆))) |
| 11 | 7, 10 | mpbid 232 | 1 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 class class class wbr 5102 dom cdm 5631 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ↑pm cpm 8777 ℂcc 11042 ℤcz 12505 ⇝𝑢culm 26261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-pm 8779 df-neg 11384 df-z 12506 df-uz 12770 df-ulm 26262 |
| This theorem is referenced by: ulmdvlem1 26285 ulmdvlem2 26286 ulmdvlem3 26287 mtestbdd 26290 mbfulm 26291 iblulm 26292 itgulm 26293 itgulm2 26294 lgamgulm2 26922 lgamcvglem 26926 |
| Copyright terms: Public domain | W3C validator |