| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ulmf2 | Structured version Visualization version GIF version | ||
| Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015.) |
| Ref | Expression |
|---|---|
| ulmf2 | ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmpm 26344 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ)) | |
| 2 | ovex 7438 | . . . . . 6 ⊢ (ℂ ↑m 𝑆) ∈ V | |
| 3 | zex 12597 | . . . . . 6 ⊢ ℤ ∈ V | |
| 4 | 2, 3 | elpm2 8888 | . . . . 5 ⊢ (𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) ↔ (𝐹:dom 𝐹⟶(ℂ ↑m 𝑆) ∧ dom 𝐹 ⊆ ℤ)) |
| 5 | 4 | simplbi 497 | . . . 4 ⊢ (𝐹 ∈ ((ℂ ↑m 𝑆) ↑pm ℤ) → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆)) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆)) |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:dom 𝐹⟶(ℂ ↑m 𝑆)) |
| 8 | fndm 6641 | . . . 4 ⊢ (𝐹 Fn 𝑍 → dom 𝐹 = 𝑍) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → dom 𝐹 = 𝑍) |
| 10 | 9 | feq2d 6692 | . 2 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → (𝐹:dom 𝐹⟶(ℂ ↑m 𝑆) ↔ 𝐹:𝑍⟶(ℂ ↑m 𝑆))) |
| 11 | 7, 10 | mpbid 232 | 1 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 dom cdm 5654 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 ↑pm cpm 8841 ℂcc 11127 ℤcz 12588 ⇝𝑢culm 26337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-pm 8843 df-neg 11469 df-z 12589 df-uz 12853 df-ulm 26338 |
| This theorem is referenced by: ulmdvlem1 26361 ulmdvlem2 26362 ulmdvlem3 26363 mtestbdd 26366 mbfulm 26367 iblulm 26368 itgulm 26369 itgulm2 26370 lgamgulm2 26998 lgamcvglem 27002 |
| Copyright terms: Public domain | W3C validator |