Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1liplem1 Structured version   Visualization version   GIF version

Theorem c1liplem1 24606
 Description: Lemma for c1lip1 24607. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
c1liplem1.a (𝜑𝐴 ∈ ℝ)
c1liplem1.b (𝜑𝐵 ∈ ℝ)
c1liplem1.le (𝜑𝐴𝐵)
c1liplem1.f (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
c1liplem1.dv (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
c1liplem1.cn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
c1liplem1.k 𝐾 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < )
Assertion
Ref Expression
c1liplem1 (𝜑 → (𝐾 ∈ ℝ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥))))))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem c1liplem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c1liplem1.k . . 3 𝐾 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < )
2 imassrn 5907 . . . . . 6 (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ran abs
3 absf 14691 . . . . . . 7 abs:ℂ⟶ℝ
4 frn 6493 . . . . . . 7 (abs:ℂ⟶ℝ → ran abs ⊆ ℝ)
53, 4ax-mp 5 . . . . . 6 ran abs ⊆ ℝ
62, 5sstri 3924 . . . . 5 (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ
76a1i 11 . . . 4 (𝜑 → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ)
8 dvf 24517 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
9 ffun 6490 . . . . . . . 8 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
108, 9ax-mp 5 . . . . . . 7 Fun (ℝ D 𝐹)
1110a1i 11 . . . . . 6 (𝜑 → Fun (ℝ D 𝐹))
12 c1liplem1.dv . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
13 cncff 23505 . . . . . . . 8 (((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
14 fdm 6495 . . . . . . . 8 (((ℝ D 𝐹) ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ → dom ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝐴[,]𝐵))
1512, 13, 143syl 18 . . . . . . 7 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝐴[,]𝐵))
16 ssdmres 5841 . . . . . . 7 ((𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝐴[,]𝐵))
1715, 16sylibr 237 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹))
18 c1liplem1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1918rexrd 10682 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
20 c1liplem1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
2120rexrd 10682 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
22 c1liplem1.le . . . . . . 7 (𝜑𝐴𝐵)
23 lbicc2 12844 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2419, 21, 22, 23syl3anc 1368 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
25 funfvima2 6971 . . . . . . 7 ((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) → (𝐴 ∈ (𝐴[,]𝐵) → ((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
2625imp 410 . . . . . 6 (((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) ∧ 𝐴 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
2711, 17, 24, 26syl21anc 836 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
28 ffun 6490 . . . . . . 7 (abs:ℂ⟶ℝ → Fun abs)
293, 28ax-mp 5 . . . . . 6 Fun abs
30 imassrn 5907 . . . . . . . 8 ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ ran (ℝ D 𝐹)
31 frn 6493 . . . . . . . . 9 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → ran (ℝ D 𝐹) ⊆ ℂ)
328, 31ax-mp 5 . . . . . . . 8 ran (ℝ D 𝐹) ⊆ ℂ
3330, 32sstri 3924 . . . . . . 7 ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ ℂ
343fdmi 6498 . . . . . . 7 dom abs = ℂ
3533, 34sseqtrri 3952 . . . . . 6 ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ dom abs
36 funfvima2 6971 . . . . . 6 ((Fun abs ∧ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ dom abs) → (((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝐴)) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))))
3729, 35, 36mp2an 691 . . . . 5 (((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝐴)) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
38 ne0i 4250 . . . . 5 ((abs‘((ℝ D 𝐹)‘𝐴)) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅)
3927, 37, 383syl 18 . . . 4 (𝜑 → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅)
40 ax-resscn 10585 . . . . . . . 8 ℝ ⊆ ℂ
41 ssid 3937 . . . . . . . 8 ℂ ⊆ ℂ
42 cncfss 23511 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
4340, 41, 42mp2an 691 . . . . . . 7 ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)
4443, 12sseldi 3913 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
45 cniccbdd 24072 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎)
4618, 20, 44, 45syl3anc 1368 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎)
47 fvelima 6706 . . . . . . . . . 10 ((Fun abs ∧ 𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))) → ∃𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))(abs‘𝑦) = 𝑏)
4829, 47mpan 689 . . . . . . . . 9 (𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → ∃𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))(abs‘𝑦) = 𝑏)
49 fvres 6664 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (𝐴[,]𝐵) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏) = ((ℝ D 𝐹)‘𝑏))
5049adantl 485 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏) = ((ℝ D 𝐹)‘𝑏))
5150fveq2d 6649 . . . . . . . . . . . . . . . 16 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)) = (abs‘((ℝ D 𝐹)‘𝑏)))
52 2fveq3 6650 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑏 → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) = (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)))
5352breq1d 5040 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑏 → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎 ↔ (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)) ≤ 𝑎))
5453rspccva 3570 . . . . . . . . . . . . . . . 16 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)) ≤ 𝑎)
5551, 54eqbrtrrd 5054 . . . . . . . . . . . . . . 15 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝑏)) ≤ 𝑎)
5655adantll 713 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝑏)) ≤ 𝑎)
57 fveq2 6645 . . . . . . . . . . . . . . 15 (((ℝ D 𝐹)‘𝑏) = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑏)) = (abs‘𝑦))
5857breq1d 5040 . . . . . . . . . . . . . 14 (((ℝ D 𝐹)‘𝑏) = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑏)) ≤ 𝑎 ↔ (abs‘𝑦) ≤ 𝑎))
5956, 58syl5ibcom 248 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (((ℝ D 𝐹)‘𝑏) = 𝑦 → (abs‘𝑦) ≤ 𝑎))
6059rexlimdva 3243 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (∃𝑏 ∈ (𝐴[,]𝐵)((ℝ D 𝐹)‘𝑏) = 𝑦 → (abs‘𝑦) ≤ 𝑎))
61 fvelima 6706 . . . . . . . . . . . . 13 ((Fun (ℝ D 𝐹) ∧ 𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → ∃𝑏 ∈ (𝐴[,]𝐵)((ℝ D 𝐹)‘𝑏) = 𝑦)
6210, 61mpan 689 . . . . . . . . . . . 12 (𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → ∃𝑏 ∈ (𝐴[,]𝐵)((ℝ D 𝐹)‘𝑏) = 𝑦)
6360, 62impel 509 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → (abs‘𝑦) ≤ 𝑎)
64 breq1 5033 . . . . . . . . . . 11 ((abs‘𝑦) = 𝑏 → ((abs‘𝑦) ≤ 𝑎𝑏𝑎))
6563, 64syl5ibcom 248 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → ((abs‘𝑦) = 𝑏𝑏𝑎))
6665rexlimdva 3243 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (∃𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))(abs‘𝑦) = 𝑏𝑏𝑎))
6748, 66syl5 34 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → 𝑏𝑎))
6867ralrimiv 3148 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎)
6968ex 416 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎 → ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎))
7069reximdva 3233 . . . . 5 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎))
7146, 70mpd 15 . . . 4 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎)
727, 39, 71suprcld 11593 . . 3 (𝜑 → sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ)
731, 72eqeltrid 2894 . 2 (𝜑𝐾 ∈ ℝ)
74 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (𝐴[,]𝐵))
7574fvresd 6665 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
76 c1liplem1.cn . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
77 cncff 23505 . . . . . . . . . . . . . 14 ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
7876, 77syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
7978ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
8079, 74ffvelrnd 6829 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ)
8180recnd 10660 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℂ)
8275, 81eqeltrrd 2891 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑦) ∈ ℂ)
83 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (𝐴[,]𝐵))
8483fvresd 6665 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
8579, 83ffvelrnd 6829 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ)
8685recnd 10660 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℂ)
8784, 86eqeltrrd 2891 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑥) ∈ ℂ)
8882, 87subcld 10988 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹𝑦) − (𝐹𝑥)) ∈ ℂ)
89 iccssre 12809 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
9018, 20, 89syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
9190ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐴[,]𝐵) ⊆ ℝ)
9291, 74sseldd 3916 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
9391, 83sseldd 3916 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
9492, 93resubcld 11059 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ)
9594recnd 10660 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℂ)
96 simpr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
97 difrp 12417 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℝ+))
9893, 92, 97syl2anc 587 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℝ+))
9996, 98mpbid 235 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ+)
10099rpne0d 12426 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ≠ 0)
10188, 95, 100absdivd 14809 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) = ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (abs‘(𝑦𝑥))))
1026a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ)
10339ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅)
10471ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎)
10529a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → Fun abs)
10688, 95, 100divcld 11407 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ℂ)
107106, 34eleqtrrdi 2901 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ dom abs)
10893rexrd 10682 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ*)
10992rexrd 10682 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
11093, 92, 96ltled 10779 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
111 ubicc2 12845 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → 𝑦 ∈ (𝑥[,]𝑦))
112108, 109, 110, 111syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (𝑥[,]𝑦))
113112fvresd 6665 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) = (𝐹𝑦))
114 lbicc2 12844 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → 𝑥 ∈ (𝑥[,]𝑦))
115108, 109, 110, 114syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (𝑥[,]𝑦))
116115fvresd 6665 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥) = (𝐹𝑥))
117113, 116oveq12d 7153 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) = ((𝐹𝑦) − (𝐹𝑥)))
118117oveq1d 7150 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) = (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))
119 iccss2 12798 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥[,]𝑦) ⊆ (𝐴[,]𝐵))
120119ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥[,]𝑦) ⊆ (𝐴[,]𝐵))
121120resabs1d 5849 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ (𝑥[,]𝑦)) = (𝐹 ↾ (𝑥[,]𝑦)))
12276ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
123 rescncf 23509 . . . . . . . . . . . . . . 15 ((𝑥[,]𝑦) ⊆ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ (𝑥[,]𝑦)) ∈ ((𝑥[,]𝑦)–cn→ℝ)))
124120, 122, 123sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ (𝑥[,]𝑦)) ∈ ((𝑥[,]𝑦)–cn→ℝ))
125121, 124eqeltrrd 2891 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹 ↾ (𝑥[,]𝑦)) ∈ ((𝑥[,]𝑦)–cn→ℝ))
12640a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ℝ ⊆ ℂ)
127 c1liplem1.f . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
128127ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐹 ∈ (ℂ ↑pm ℝ))
129 cnex 10609 . . . . . . . . . . . . . . . . . . . 20 ℂ ∈ V
130 reex 10619 . . . . . . . . . . . . . . . . . . . 20 ℝ ∈ V
131129, 130elpm2 8423 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
132131simplbi 501 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
133128, 132syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐹:dom 𝐹⟶ℂ)
134131simprbi 500 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
135128, 134syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom 𝐹 ⊆ ℝ)
136 iccssre 12809 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥[,]𝑦) ⊆ ℝ)
13793, 92, 136syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥[,]𝑦) ⊆ ℝ)
138 eqid 2798 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
139138tgioo2 23415 . . . . . . . . . . . . . . . . . 18 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
140138, 139dvres 24521 . . . . . . . . . . . . . . . . 17 (((ℝ ⊆ ℂ ∧ 𝐹:dom 𝐹⟶ℂ) ∧ (dom 𝐹 ⊆ ℝ ∧ (𝑥[,]𝑦) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦))))
141126, 133, 135, 137, 140syl22anc 837 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦))))
142 iccntr 23433 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
14393, 92, 142syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
144143reseq2d 5818 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)))
145141, 144eqtrd 2833 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)))
146145dmeqd 5738 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = dom ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)))
147 ioossicc 12813 . . . . . . . . . . . . . . . . 17 (𝑥(,)𝑦) ⊆ (𝑥[,]𝑦)
148147, 120sstrid 3926 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥(,)𝑦) ⊆ (𝐴[,]𝐵))
14917ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹))
150148, 149sstrd 3925 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥(,)𝑦) ⊆ dom (ℝ D 𝐹))
151 ssdmres 5841 . . . . . . . . . . . . . . 15 ((𝑥(,)𝑦) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)) = (𝑥(,)𝑦))
152150, 151sylib 221 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)) = (𝑥(,)𝑦))
153146, 152eqtrd 2833 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = (𝑥(,)𝑦))
15493, 92, 96, 125, 153mvth 24602 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ∃𝑎 ∈ (𝑥(,)𝑦)((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)))
155145fveq1d 6647 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎))
156155adantrr 716 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎))
157 fvres 6664 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑥(,)𝑦) → (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎) = ((ℝ D 𝐹)‘𝑎))
158157ad2antll 728 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎) = ((ℝ D 𝐹)‘𝑎))
159156, 158eqtrd 2833 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((ℝ D 𝐹)‘𝑎))
16010a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → Fun (ℝ D 𝐹))
16117ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹))
162148sseld 3914 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑎 ∈ (𝑥(,)𝑦) → 𝑎 ∈ (𝐴[,]𝐵)))
163162impr 458 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → 𝑎 ∈ (𝐴[,]𝐵))
164 funfvima2 6971 . . . . . . . . . . . . . . . . . 18 ((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) → (𝑎 ∈ (𝐴[,]𝐵) → ((ℝ D 𝐹)‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
165164imp 410 . . . . . . . . . . . . . . . . 17 (((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) ∧ 𝑎 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
166160, 161, 163, 165syl21anc 836 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D 𝐹)‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
167159, 166eqeltrd 2890 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
168 eleq1 2877 . . . . . . . . . . . . . . 15 (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ↔ ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
169167, 168syl5ibcom 248 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
170169expr 460 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑎 ∈ (𝑥(,)𝑦) → (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))))
171170rexlimdv 3242 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∃𝑎 ∈ (𝑥(,)𝑦)((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
172154, 171mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
173118, 172eqeltrrd 2891 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
174 funfvima 6970 . . . . . . . . . . 11 ((Fun abs ∧ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ dom abs) → ((((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))))
175174imp 410 . . . . . . . . . 10 (((Fun abs ∧ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ dom abs) ∧ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
176105, 107, 173, 175syl21anc 836 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
177102, 103, 104, 176suprubd 11592 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ≤ sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ))
178177, 1breqtrrdi 5072 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ≤ 𝐾)
179101, 178eqbrtrrd 5054 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (abs‘(𝑦𝑥))) ≤ 𝐾)
18088abscld 14790 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ∈ ℝ)
18173ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐾 ∈ ℝ)
18295, 100absrpcld 14802 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(𝑦𝑥)) ∈ ℝ+)
183180, 181, 182ledivmuld 12474 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((abs‘((𝐹𝑦) − (𝐹𝑥))) / (abs‘(𝑦𝑥))) ≤ 𝐾 ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ ((abs‘(𝑦𝑥)) · 𝐾)))
184179, 183mpbid 235 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ ((abs‘(𝑦𝑥)) · 𝐾))
185182rpcnd 12423 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(𝑦𝑥)) ∈ ℂ)
186181recnd 10660 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐾 ∈ ℂ)
187185, 186mulcomd 10653 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((abs‘(𝑦𝑥)) · 𝐾) = (𝐾 · (abs‘(𝑦𝑥))))
188184, 187breqtrd 5056 . . . 4 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥))))
189188ex 416 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥)))))
190189ralrimivva 3156 . 2 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥)))))
19173, 190jca 515 1 (𝜑 → (𝐾 ∈ ℝ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107   ⊆ wss 3881  ∅c0 4243   class class class wbr 5030  dom cdm 5519  ran crn 5520   ↾ cres 5521   “ cima 5522  Fun wfun 6318  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135   ↑pm cpm 8392  supcsup 8890  ℂcc 10526  ℝcr 10527   · cmul 10533  ℝ*cxr 10665   < clt 10666   ≤ cle 10667   − cmin 10861   / cdiv 11288  ℝ+crp 12379  (,)cioo 12728  [,]cicc 12731  abscabs 14587  TopOpenctopn 16689  topGenctg 16705  ℂfldccnfld 20094  intcnt 21629  –cn→ccncf 23488   D cdv 24473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606  ax-addf 10607  ax-mulf 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-om 7563  df-1st 7673  df-2nd 7674  df-supp 7816  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-ixp 8447  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-dec 12089  df-uz 12234  df-q 12339  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ico 12734  df-icc 12735  df-fz 12888  df-fzo 13031  df-seq 13367  df-exp 13428  df-hash 13689  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18220  df-cntz 18442  df-cmn 18903  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-top 21506  df-topon 21523  df-topsp 21545  df-bases 21558  df-cld 21631  df-ntr 21632  df-cls 21633  df-nei 21710  df-lp 21748  df-perf 21749  df-cn 21839  df-cnp 21840  df-haus 21927  df-cmp 21999  df-tx 22174  df-hmeo 22367  df-fil 22458  df-fm 22550  df-flim 22551  df-flf 22552  df-xms 22934  df-ms 22935  df-tms 22936  df-cncf 23490  df-limc 24476  df-dv 24477 This theorem is referenced by:  c1lip1  24607
 Copyright terms: Public domain W3C validator