MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1liplem1 Structured version   Visualization version   GIF version

Theorem c1liplem1 25169
Description: Lemma for c1lip1 25170. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
c1liplem1.a (𝜑𝐴 ∈ ℝ)
c1liplem1.b (𝜑𝐵 ∈ ℝ)
c1liplem1.le (𝜑𝐴𝐵)
c1liplem1.f (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
c1liplem1.dv (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
c1liplem1.cn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
c1liplem1.k 𝐾 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < )
Assertion
Ref Expression
c1liplem1 (𝜑 → (𝐾 ∈ ℝ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥))))))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem c1liplem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c1liplem1.k . . 3 𝐾 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < )
2 imassrn 5983 . . . . . 6 (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ran abs
3 absf 15058 . . . . . . 7 abs:ℂ⟶ℝ
4 frn 6616 . . . . . . 7 (abs:ℂ⟶ℝ → ran abs ⊆ ℝ)
53, 4ax-mp 5 . . . . . 6 ran abs ⊆ ℝ
62, 5sstri 3931 . . . . 5 (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ
76a1i 11 . . . 4 (𝜑 → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ)
8 dvf 25080 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
9 ffun 6612 . . . . . . . 8 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
108, 9ax-mp 5 . . . . . . 7 Fun (ℝ D 𝐹)
1110a1i 11 . . . . . 6 (𝜑 → Fun (ℝ D 𝐹))
12 c1liplem1.dv . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
13 cncff 24065 . . . . . . . 8 (((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
14 fdm 6618 . . . . . . . 8 (((ℝ D 𝐹) ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ → dom ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝐴[,]𝐵))
1512, 13, 143syl 18 . . . . . . 7 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝐴[,]𝐵))
16 ssdmres 5917 . . . . . . 7 ((𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝐴[,]𝐵))
1715, 16sylibr 233 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹))
18 c1liplem1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1918rexrd 11034 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
20 c1liplem1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
2120rexrd 11034 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
22 c1liplem1.le . . . . . . 7 (𝜑𝐴𝐵)
23 lbicc2 13205 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2419, 21, 22, 23syl3anc 1370 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
25 funfvima2 7116 . . . . . . 7 ((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) → (𝐴 ∈ (𝐴[,]𝐵) → ((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
2625imp 407 . . . . . 6 (((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) ∧ 𝐴 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
2711, 17, 24, 26syl21anc 835 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
28 ffun 6612 . . . . . . 7 (abs:ℂ⟶ℝ → Fun abs)
293, 28ax-mp 5 . . . . . 6 Fun abs
30 imassrn 5983 . . . . . . . 8 ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ ran (ℝ D 𝐹)
31 frn 6616 . . . . . . . . 9 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → ran (ℝ D 𝐹) ⊆ ℂ)
328, 31ax-mp 5 . . . . . . . 8 ran (ℝ D 𝐹) ⊆ ℂ
3330, 32sstri 3931 . . . . . . 7 ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ ℂ
343fdmi 6621 . . . . . . 7 dom abs = ℂ
3533, 34sseqtrri 3959 . . . . . 6 ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ dom abs
36 funfvima2 7116 . . . . . 6 ((Fun abs ∧ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ dom abs) → (((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝐴)) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))))
3729, 35, 36mp2an 689 . . . . 5 (((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝐴)) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
38 ne0i 4269 . . . . 5 ((abs‘((ℝ D 𝐹)‘𝐴)) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅)
3927, 37, 383syl 18 . . . 4 (𝜑 → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅)
40 ax-resscn 10937 . . . . . . . 8 ℝ ⊆ ℂ
41 ssid 3944 . . . . . . . 8 ℂ ⊆ ℂ
42 cncfss 24071 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
4340, 41, 42mp2an 689 . . . . . . 7 ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)
4443, 12sselid 3920 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
45 cniccbdd 24634 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎)
4618, 20, 44, 45syl3anc 1370 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎)
47 fvelima 6844 . . . . . . . . . 10 ((Fun abs ∧ 𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))) → ∃𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))(abs‘𝑦) = 𝑏)
4829, 47mpan 687 . . . . . . . . 9 (𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → ∃𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))(abs‘𝑦) = 𝑏)
49 fvres 6802 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (𝐴[,]𝐵) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏) = ((ℝ D 𝐹)‘𝑏))
5049adantl 482 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏) = ((ℝ D 𝐹)‘𝑏))
5150fveq2d 6787 . . . . . . . . . . . . . . . 16 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)) = (abs‘((ℝ D 𝐹)‘𝑏)))
52 2fveq3 6788 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑏 → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) = (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)))
5352breq1d 5085 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑏 → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎 ↔ (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)) ≤ 𝑎))
5453rspccva 3561 . . . . . . . . . . . . . . . 16 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)) ≤ 𝑎)
5551, 54eqbrtrrd 5099 . . . . . . . . . . . . . . 15 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝑏)) ≤ 𝑎)
5655adantll 711 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝑏)) ≤ 𝑎)
57 fveq2 6783 . . . . . . . . . . . . . . 15 (((ℝ D 𝐹)‘𝑏) = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑏)) = (abs‘𝑦))
5857breq1d 5085 . . . . . . . . . . . . . 14 (((ℝ D 𝐹)‘𝑏) = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑏)) ≤ 𝑎 ↔ (abs‘𝑦) ≤ 𝑎))
5956, 58syl5ibcom 244 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (((ℝ D 𝐹)‘𝑏) = 𝑦 → (abs‘𝑦) ≤ 𝑎))
6059rexlimdva 3214 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (∃𝑏 ∈ (𝐴[,]𝐵)((ℝ D 𝐹)‘𝑏) = 𝑦 → (abs‘𝑦) ≤ 𝑎))
61 fvelima 6844 . . . . . . . . . . . . 13 ((Fun (ℝ D 𝐹) ∧ 𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → ∃𝑏 ∈ (𝐴[,]𝐵)((ℝ D 𝐹)‘𝑏) = 𝑦)
6210, 61mpan 687 . . . . . . . . . . . 12 (𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → ∃𝑏 ∈ (𝐴[,]𝐵)((ℝ D 𝐹)‘𝑏) = 𝑦)
6360, 62impel 506 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → (abs‘𝑦) ≤ 𝑎)
64 breq1 5078 . . . . . . . . . . 11 ((abs‘𝑦) = 𝑏 → ((abs‘𝑦) ≤ 𝑎𝑏𝑎))
6563, 64syl5ibcom 244 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → ((abs‘𝑦) = 𝑏𝑏𝑎))
6665rexlimdva 3214 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (∃𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))(abs‘𝑦) = 𝑏𝑏𝑎))
6748, 66syl5 34 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → 𝑏𝑎))
6867ralrimiv 3103 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎)
6968ex 413 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎 → ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎))
7069reximdva 3204 . . . . 5 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎))
7146, 70mpd 15 . . . 4 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎)
727, 39, 71suprcld 11947 . . 3 (𝜑 → sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ)
731, 72eqeltrid 2844 . 2 (𝜑𝐾 ∈ ℝ)
74 simplrr 775 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (𝐴[,]𝐵))
7574fvresd 6803 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
76 c1liplem1.cn . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
77 cncff 24065 . . . . . . . . . . . . . 14 ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
7876, 77syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
7978ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
8079, 74ffvelrnd 6971 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ)
8180recnd 11012 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℂ)
8275, 81eqeltrrd 2841 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑦) ∈ ℂ)
83 simplrl 774 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (𝐴[,]𝐵))
8483fvresd 6803 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
8579, 83ffvelrnd 6971 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ)
8685recnd 11012 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℂ)
8784, 86eqeltrrd 2841 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑥) ∈ ℂ)
8882, 87subcld 11341 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹𝑦) − (𝐹𝑥)) ∈ ℂ)
89 iccssre 13170 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
9018, 20, 89syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
9190ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐴[,]𝐵) ⊆ ℝ)
9291, 74sseldd 3923 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
9391, 83sseldd 3923 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
9492, 93resubcld 11412 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ)
9594recnd 11012 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℂ)
96 simpr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
97 difrp 12777 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℝ+))
9893, 92, 97syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℝ+))
9996, 98mpbid 231 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ+)
10099rpne0d 12786 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ≠ 0)
10188, 95, 100absdivd 15176 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) = ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (abs‘(𝑦𝑥))))
1026a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ)
10339ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅)
10471ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎)
10529a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → Fun abs)
10688, 95, 100divcld 11760 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ℂ)
107106, 34eleqtrrdi 2851 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ dom abs)
10893rexrd 11034 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ*)
10992rexrd 11034 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
11093, 92, 96ltled 11132 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
111 ubicc2 13206 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → 𝑦 ∈ (𝑥[,]𝑦))
112108, 109, 110, 111syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (𝑥[,]𝑦))
113112fvresd 6803 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) = (𝐹𝑦))
114 lbicc2 13205 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → 𝑥 ∈ (𝑥[,]𝑦))
115108, 109, 110, 114syl3anc 1370 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (𝑥[,]𝑦))
116115fvresd 6803 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥) = (𝐹𝑥))
117113, 116oveq12d 7302 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) = ((𝐹𝑦) − (𝐹𝑥)))
118117oveq1d 7299 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) = (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))
119 iccss2 13159 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥[,]𝑦) ⊆ (𝐴[,]𝐵))
120119ad2antlr 724 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥[,]𝑦) ⊆ (𝐴[,]𝐵))
121120resabs1d 5925 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ (𝑥[,]𝑦)) = (𝐹 ↾ (𝑥[,]𝑦)))
12276ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
123 rescncf 24069 . . . . . . . . . . . . . . 15 ((𝑥[,]𝑦) ⊆ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ (𝑥[,]𝑦)) ∈ ((𝑥[,]𝑦)–cn→ℝ)))
124120, 122, 123sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ (𝑥[,]𝑦)) ∈ ((𝑥[,]𝑦)–cn→ℝ))
125121, 124eqeltrrd 2841 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹 ↾ (𝑥[,]𝑦)) ∈ ((𝑥[,]𝑦)–cn→ℝ))
12640a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ℝ ⊆ ℂ)
127 c1liplem1.f . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
128127ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐹 ∈ (ℂ ↑pm ℝ))
129 cnex 10961 . . . . . . . . . . . . . . . . . . . 20 ℂ ∈ V
130 reex 10971 . . . . . . . . . . . . . . . . . . . 20 ℝ ∈ V
131129, 130elpm2 8671 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
132131simplbi 498 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
133128, 132syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐹:dom 𝐹⟶ℂ)
134131simprbi 497 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
135128, 134syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom 𝐹 ⊆ ℝ)
136 iccssre 13170 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥[,]𝑦) ⊆ ℝ)
13793, 92, 136syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥[,]𝑦) ⊆ ℝ)
138 eqid 2739 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
139138tgioo2 23975 . . . . . . . . . . . . . . . . . 18 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
140138, 139dvres 25084 . . . . . . . . . . . . . . . . 17 (((ℝ ⊆ ℂ ∧ 𝐹:dom 𝐹⟶ℂ) ∧ (dom 𝐹 ⊆ ℝ ∧ (𝑥[,]𝑦) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦))))
141126, 133, 135, 137, 140syl22anc 836 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦))))
142 iccntr 23993 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
14393, 92, 142syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
144143reseq2d 5894 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)))
145141, 144eqtrd 2779 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)))
146145dmeqd 5817 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = dom ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)))
147 ioossicc 13174 . . . . . . . . . . . . . . . . 17 (𝑥(,)𝑦) ⊆ (𝑥[,]𝑦)
148147, 120sstrid 3933 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥(,)𝑦) ⊆ (𝐴[,]𝐵))
14917ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹))
150148, 149sstrd 3932 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥(,)𝑦) ⊆ dom (ℝ D 𝐹))
151 ssdmres 5917 . . . . . . . . . . . . . . 15 ((𝑥(,)𝑦) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)) = (𝑥(,)𝑦))
152150, 151sylib 217 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)) = (𝑥(,)𝑦))
153146, 152eqtrd 2779 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = (𝑥(,)𝑦))
15493, 92, 96, 125, 153mvth 25165 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ∃𝑎 ∈ (𝑥(,)𝑦)((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)))
155145fveq1d 6785 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎))
156155adantrr 714 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎))
157 fvres 6802 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑥(,)𝑦) → (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎) = ((ℝ D 𝐹)‘𝑎))
158157ad2antll 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎) = ((ℝ D 𝐹)‘𝑎))
159156, 158eqtrd 2779 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((ℝ D 𝐹)‘𝑎))
16010a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → Fun (ℝ D 𝐹))
16117ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹))
162148sseld 3921 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑎 ∈ (𝑥(,)𝑦) → 𝑎 ∈ (𝐴[,]𝐵)))
163162impr 455 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → 𝑎 ∈ (𝐴[,]𝐵))
164 funfvima2 7116 . . . . . . . . . . . . . . . . . 18 ((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) → (𝑎 ∈ (𝐴[,]𝐵) → ((ℝ D 𝐹)‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
165164imp 407 . . . . . . . . . . . . . . . . 17 (((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) ∧ 𝑎 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
166160, 161, 163, 165syl21anc 835 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D 𝐹)‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
167159, 166eqeltrd 2840 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
168 eleq1 2827 . . . . . . . . . . . . . . 15 (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ↔ ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
169167, 168syl5ibcom 244 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
170169expr 457 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑎 ∈ (𝑥(,)𝑦) → (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))))
171170rexlimdv 3213 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∃𝑎 ∈ (𝑥(,)𝑦)((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
172154, 171mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
173118, 172eqeltrrd 2841 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
174 funfvima 7115 . . . . . . . . . . 11 ((Fun abs ∧ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ dom abs) → ((((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))))
175174imp 407 . . . . . . . . . 10 (((Fun abs ∧ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ dom abs) ∧ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
176105, 107, 173, 175syl21anc 835 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
177102, 103, 104, 176suprubd 11946 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ≤ sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ))
178177, 1breqtrrdi 5117 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ≤ 𝐾)
179101, 178eqbrtrrd 5099 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (abs‘(𝑦𝑥))) ≤ 𝐾)
18088abscld 15157 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ∈ ℝ)
18173ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐾 ∈ ℝ)
18295, 100absrpcld 15169 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(𝑦𝑥)) ∈ ℝ+)
183180, 181, 182ledivmuld 12834 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((abs‘((𝐹𝑦) − (𝐹𝑥))) / (abs‘(𝑦𝑥))) ≤ 𝐾 ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ ((abs‘(𝑦𝑥)) · 𝐾)))
184179, 183mpbid 231 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ ((abs‘(𝑦𝑥)) · 𝐾))
185182rpcnd 12783 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(𝑦𝑥)) ∈ ℂ)
186181recnd 11012 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐾 ∈ ℂ)
187185, 186mulcomd 11005 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((abs‘(𝑦𝑥)) · 𝐾) = (𝐾 · (abs‘(𝑦𝑥))))
188184, 187breqtrd 5101 . . . 4 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥))))
189188ex 413 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥)))))
190189ralrimivva 3124 . 2 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥)))))
19173, 190jca 512 1 (𝜑 → (𝐾 ∈ ℝ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066  wss 3888  c0 4257   class class class wbr 5075  dom cdm 5590  ran crn 5591  cres 5592  cima 5593  Fun wfun 6431  wf 6433  cfv 6437  (class class class)co 7284  pm cpm 8625  supcsup 9208  cc 10878  cr 10879   · cmul 10885  *cxr 11017   < clt 11018  cle 11019  cmin 11214   / cdiv 11641  +crp 12739  (,)cioo 13088  [,]cicc 13091  abscabs 14954  TopOpenctopn 17141  topGenctg 17157  fldccnfld 20606  intcnt 22177  cnccncf 24048   D cdv 25036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-cmp 22547  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040
This theorem is referenced by:  c1lip1  25170
  Copyright terms: Public domain W3C validator