MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c1liplem1 Structured version   Visualization version   GIF version

Theorem c1liplem1 25951
Description: Lemma for c1lip1 25952. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
c1liplem1.a (𝜑𝐴 ∈ ℝ)
c1liplem1.b (𝜑𝐵 ∈ ℝ)
c1liplem1.le (𝜑𝐴𝐵)
c1liplem1.f (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
c1liplem1.dv (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
c1liplem1.cn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
c1liplem1.k 𝐾 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < )
Assertion
Ref Expression
c1liplem1 (𝜑 → (𝐾 ∈ ℝ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥))))))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem c1liplem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c1liplem1.k . . 3 𝐾 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < )
2 imassrn 6058 . . . . . 6 (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ran abs
3 absf 15354 . . . . . . 7 abs:ℂ⟶ℝ
4 frn 6712 . . . . . . 7 (abs:ℂ⟶ℝ → ran abs ⊆ ℝ)
53, 4ax-mp 5 . . . . . 6 ran abs ⊆ ℝ
62, 5sstri 3968 . . . . 5 (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ
76a1i 11 . . . 4 (𝜑 → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ)
8 dvf 25858 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
9 ffun 6708 . . . . . . . 8 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
108, 9ax-mp 5 . . . . . . 7 Fun (ℝ D 𝐹)
1110a1i 11 . . . . . 6 (𝜑 → Fun (ℝ D 𝐹))
12 c1liplem1.dv . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
13 cncff 24835 . . . . . . . 8 (((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
14 fdm 6714 . . . . . . . 8 (((ℝ D 𝐹) ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ → dom ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝐴[,]𝐵))
1512, 13, 143syl 18 . . . . . . 7 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝐴[,]𝐵))
16 ssdmres 6000 . . . . . . 7 ((𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) = (𝐴[,]𝐵))
1715, 16sylibr 234 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹))
18 c1liplem1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1918rexrd 11283 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
20 c1liplem1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
2120rexrd 11283 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
22 c1liplem1.le . . . . . . 7 (𝜑𝐴𝐵)
23 lbicc2 13479 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2419, 21, 22, 23syl3anc 1373 . . . . . 6 (𝜑𝐴 ∈ (𝐴[,]𝐵))
25 funfvima2 7222 . . . . . . 7 ((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) → (𝐴 ∈ (𝐴[,]𝐵) → ((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
2625imp 406 . . . . . 6 (((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) ∧ 𝐴 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
2711, 17, 24, 26syl21anc 837 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
28 ffun 6708 . . . . . . 7 (abs:ℂ⟶ℝ → Fun abs)
293, 28ax-mp 5 . . . . . 6 Fun abs
30 imassrn 6058 . . . . . . . 8 ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ ran (ℝ D 𝐹)
31 frn 6712 . . . . . . . . 9 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → ran (ℝ D 𝐹) ⊆ ℂ)
328, 31ax-mp 5 . . . . . . . 8 ran (ℝ D 𝐹) ⊆ ℂ
3330, 32sstri 3968 . . . . . . 7 ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ ℂ
343fdmi 6716 . . . . . . 7 dom abs = ℂ
3533, 34sseqtrri 4008 . . . . . 6 ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ dom abs
36 funfvima2 7222 . . . . . 6 ((Fun abs ∧ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ⊆ dom abs) → (((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝐴)) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))))
3729, 35, 36mp2an 692 . . . . 5 (((ℝ D 𝐹)‘𝐴) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝐴)) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
38 ne0i 4316 . . . . 5 ((abs‘((ℝ D 𝐹)‘𝐴)) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅)
3927, 37, 383syl 18 . . . 4 (𝜑 → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅)
40 ax-resscn 11184 . . . . . . . 8 ℝ ⊆ ℂ
41 ssid 3981 . . . . . . . 8 ℂ ⊆ ℂ
42 cncfss 24841 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
4340, 41, 42mp2an 692 . . . . . . 7 ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)
4443, 12sselid 3956 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
45 cniccbdd 25412 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎)
4618, 20, 44, 45syl3anc 1373 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎)
47 fvelima 6943 . . . . . . . . . 10 ((Fun abs ∧ 𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))) → ∃𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))(abs‘𝑦) = 𝑏)
4829, 47mpan 690 . . . . . . . . 9 (𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → ∃𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))(abs‘𝑦) = 𝑏)
49 fvres 6894 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (𝐴[,]𝐵) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏) = ((ℝ D 𝐹)‘𝑏))
5049adantl 481 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏) = ((ℝ D 𝐹)‘𝑏))
5150fveq2d 6879 . . . . . . . . . . . . . . . 16 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)) = (abs‘((ℝ D 𝐹)‘𝑏)))
52 2fveq3 6880 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑏 → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) = (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)))
5352breq1d 5129 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑏 → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎 ↔ (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)) ≤ 𝑎))
5453rspccva 3600 . . . . . . . . . . . . . . . 16 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑏)) ≤ 𝑎)
5551, 54eqbrtrrd 5143 . . . . . . . . . . . . . . 15 ((∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎𝑏 ∈ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝑏)) ≤ 𝑎)
5655adantll 714 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (abs‘((ℝ D 𝐹)‘𝑏)) ≤ 𝑎)
57 fveq2 6875 . . . . . . . . . . . . . . 15 (((ℝ D 𝐹)‘𝑏) = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑏)) = (abs‘𝑦))
5857breq1d 5129 . . . . . . . . . . . . . 14 (((ℝ D 𝐹)‘𝑏) = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑏)) ≤ 𝑎 ↔ (abs‘𝑦) ≤ 𝑎))
5956, 58syl5ibcom 245 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑏 ∈ (𝐴[,]𝐵)) → (((ℝ D 𝐹)‘𝑏) = 𝑦 → (abs‘𝑦) ≤ 𝑎))
6059rexlimdva 3141 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (∃𝑏 ∈ (𝐴[,]𝐵)((ℝ D 𝐹)‘𝑏) = 𝑦 → (abs‘𝑦) ≤ 𝑎))
61 fvelima 6943 . . . . . . . . . . . . 13 ((Fun (ℝ D 𝐹) ∧ 𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → ∃𝑏 ∈ (𝐴[,]𝐵)((ℝ D 𝐹)‘𝑏) = 𝑦)
6210, 61mpan 690 . . . . . . . . . . . 12 (𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → ∃𝑏 ∈ (𝐴[,]𝐵)((ℝ D 𝐹)‘𝑏) = 𝑦)
6360, 62impel 505 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → (abs‘𝑦) ≤ 𝑎)
64 breq1 5122 . . . . . . . . . . 11 ((abs‘𝑦) = 𝑏 → ((abs‘𝑦) ≤ 𝑎𝑏𝑎))
6563, 64syl5ibcom 245 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) ∧ 𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → ((abs‘𝑦) = 𝑏𝑏𝑎))
6665rexlimdva 3141 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (∃𝑦 ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))(abs‘𝑦) = 𝑏𝑏𝑎))
6748, 66syl5 34 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → (𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → 𝑏𝑎))
6867ralrimiv 3131 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎) → ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎)
6968ex 412 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎 → ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎))
7069reximdva 3153 . . . . 5 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑥)) ≤ 𝑎 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎))
7146, 70mpd 15 . . . 4 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎)
727, 39, 71suprcld 12203 . . 3 (𝜑 → sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ∈ ℝ)
731, 72eqeltrid 2838 . 2 (𝜑𝐾 ∈ ℝ)
74 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (𝐴[,]𝐵))
7574fvresd 6895 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) = (𝐹𝑦))
76 c1liplem1.cn . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
77 cncff 24835 . . . . . . . . . . . . . 14 ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
7876, 77syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
7978ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)⟶ℝ)
8079, 74ffvelcdmd 7074 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℝ)
8180recnd 11261 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑦) ∈ ℂ)
8275, 81eqeltrrd 2835 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑦) ∈ ℂ)
83 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (𝐴[,]𝐵))
8483fvresd 6895 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) = (𝐹𝑥))
8579, 83ffvelcdmd 7074 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℝ)
8685recnd 11261 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵))‘𝑥) ∈ ℂ)
8784, 86eqeltrrd 2835 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹𝑥) ∈ ℂ)
8882, 87subcld 11592 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹𝑦) − (𝐹𝑥)) ∈ ℂ)
89 iccssre 13444 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
9018, 20, 89syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
9190ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐴[,]𝐵) ⊆ ℝ)
9291, 74sseldd 3959 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
9391, 83sseldd 3959 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
9492, 93resubcld 11663 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ)
9594recnd 11261 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℂ)
96 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
97 difrp 13045 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℝ+))
9893, 92, 97syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℝ+))
9996, 98mpbid 232 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ+)
10099rpne0d 13054 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦𝑥) ≠ 0)
10188, 95, 100absdivd 15472 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) = ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (abs‘(𝑦𝑥))))
1026a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ⊆ ℝ)
10339ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) ≠ ∅)
10471ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ∃𝑎 ∈ ℝ ∀𝑏 ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))𝑏𝑎)
10529a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → Fun abs)
10688, 95, 100divcld 12015 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ℂ)
107106, 34eleqtrrdi 2845 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ dom abs)
10893rexrd 11283 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ*)
10992rexrd 11283 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
11093, 92, 96ltled 11381 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
111 ubicc2 13480 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → 𝑦 ∈ (𝑥[,]𝑦))
112108, 109, 110, 111syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (𝑥[,]𝑦))
113112fvresd 6895 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) = (𝐹𝑦))
114 lbicc2 13479 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → 𝑥 ∈ (𝑥[,]𝑦))
115108, 109, 110, 114syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (𝑥[,]𝑦))
116115fvresd 6895 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥) = (𝐹𝑥))
117113, 116oveq12d 7421 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) = ((𝐹𝑦) − (𝐹𝑥)))
118117oveq1d 7418 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) = (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))
119 iccss2 13432 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥[,]𝑦) ⊆ (𝐴[,]𝐵))
120119ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥[,]𝑦) ⊆ (𝐴[,]𝐵))
121120resabs1d 5995 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ (𝑥[,]𝑦)) = (𝐹 ↾ (𝑥[,]𝑦)))
12276ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
123 rescncf 24839 . . . . . . . . . . . . . . 15 ((𝑥[,]𝑦) ⊆ (𝐴[,]𝐵) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ (𝑥[,]𝑦)) ∈ ((𝑥[,]𝑦)–cn→ℝ)))
124120, 122, 123sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹 ↾ (𝐴[,]𝐵)) ↾ (𝑥[,]𝑦)) ∈ ((𝑥[,]𝑦)–cn→ℝ))
125121, 124eqeltrrd 2835 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹 ↾ (𝑥[,]𝑦)) ∈ ((𝑥[,]𝑦)–cn→ℝ))
12640a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ℝ ⊆ ℂ)
127 c1liplem1.f . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
128127ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐹 ∈ (ℂ ↑pm ℝ))
129 cnex 11208 . . . . . . . . . . . . . . . . . . . 20 ℂ ∈ V
130 reex 11218 . . . . . . . . . . . . . . . . . . . 20 ℝ ∈ V
131129, 130elpm2 8886 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
132131simplbi 497 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (ℂ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℂ)
133128, 132syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐹:dom 𝐹⟶ℂ)
134131simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (ℂ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
135128, 134syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom 𝐹 ⊆ ℝ)
136 iccssre 13444 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥[,]𝑦) ⊆ ℝ)
13793, 92, 136syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥[,]𝑦) ⊆ ℝ)
138 eqid 2735 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
139 tgioo4 24742 . . . . . . . . . . . . . . . . . 18 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
140138, 139dvres 25862 . . . . . . . . . . . . . . . . 17 (((ℝ ⊆ ℂ ∧ 𝐹:dom 𝐹⟶ℂ) ∧ (dom 𝐹 ⊆ ℝ ∧ (𝑥[,]𝑦) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦))))
141126, 133, 135, 137, 140syl22anc 838 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦))))
142 iccntr 24759 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
14393, 92, 142syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦)) = (𝑥(,)𝑦))
144143reseq2d 5966 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)))
145141, 144eqtrd 2770 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)))
146145dmeqd 5885 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = dom ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)))
147 ioossicc 13448 . . . . . . . . . . . . . . . . 17 (𝑥(,)𝑦) ⊆ (𝑥[,]𝑦)
148147, 120sstrid 3970 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥(,)𝑦) ⊆ (𝐴[,]𝐵))
14917ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹))
150148, 149sstrd 3969 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥(,)𝑦) ⊆ dom (ℝ D 𝐹))
151 ssdmres 6000 . . . . . . . . . . . . . . 15 ((𝑥(,)𝑦) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)) = (𝑥(,)𝑦))
152150, 151sylib 218 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom ((ℝ D 𝐹) ↾ (𝑥(,)𝑦)) = (𝑥(,)𝑦))
153146, 152eqtrd 2770 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → dom (ℝ D (𝐹 ↾ (𝑥[,]𝑦))) = (𝑥(,)𝑦))
15493, 92, 96, 125, 153mvth 25947 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ∃𝑎 ∈ (𝑥(,)𝑦)((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)))
155145fveq1d 6877 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎))
156155adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎))
157 fvres 6894 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑥(,)𝑦) → (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎) = ((ℝ D 𝐹)‘𝑎))
158157ad2antll 729 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → (((ℝ D 𝐹) ↾ (𝑥(,)𝑦))‘𝑎) = ((ℝ D 𝐹)‘𝑎))
159156, 158eqtrd 2770 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((ℝ D 𝐹)‘𝑎))
16010a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → Fun (ℝ D 𝐹))
16117ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹))
162148sseld 3957 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑎 ∈ (𝑥(,)𝑦) → 𝑎 ∈ (𝐴[,]𝐵)))
163162impr 454 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → 𝑎 ∈ (𝐴[,]𝐵))
164 funfvima2 7222 . . . . . . . . . . . . . . . . . 18 ((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) → (𝑎 ∈ (𝐴[,]𝐵) → ((ℝ D 𝐹)‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
165164imp 406 . . . . . . . . . . . . . . . . 17 (((Fun (ℝ D 𝐹) ∧ (𝐴[,]𝐵) ⊆ dom (ℝ D 𝐹)) ∧ 𝑎 ∈ (𝐴[,]𝐵)) → ((ℝ D 𝐹)‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
166160, 161, 163, 165syl21anc 837 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D 𝐹)‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
167159, 166eqeltrd 2834 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → ((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
168 eleq1 2822 . . . . . . . . . . . . . . 15 (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) ↔ ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
169167, 168syl5ibcom 245 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (𝑥 < 𝑦𝑎 ∈ (𝑥(,)𝑦))) → (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
170169expr 456 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑎 ∈ (𝑥(,)𝑦) → (((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))))
171170rexlimdv 3139 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (∃𝑎 ∈ (𝑥(,)𝑦)((ℝ D (𝐹 ↾ (𝑥[,]𝑦)))‘𝑎) = ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
172154, 171mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((((𝐹 ↾ (𝑥[,]𝑦))‘𝑦) − ((𝐹 ↾ (𝑥[,]𝑦))‘𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
173118, 172eqeltrrd 2835 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))
174 funfvima 7221 . . . . . . . . . . 11 ((Fun abs ∧ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ dom abs) → ((((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵)) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵)))))
175174imp 406 . . . . . . . . . 10 (((Fun abs ∧ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ dom abs) ∧ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ((ℝ D 𝐹) “ (𝐴[,]𝐵))) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
176105, 107, 173, 175syl21anc 837 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ∈ (abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))))
177102, 103, 104, 176suprubd 12202 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ≤ sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ))
178177, 1breqtrrdi 5161 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) ≤ 𝐾)
179101, 178eqbrtrrd 5143 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (abs‘(𝑦𝑥))) ≤ 𝐾)
18088abscld 15453 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ∈ ℝ)
18173ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐾 ∈ ℝ)
18295, 100absrpcld 15465 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(𝑦𝑥)) ∈ ℝ+)
183180, 181, 182ledivmuld 13102 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((abs‘((𝐹𝑦) − (𝐹𝑥))) / (abs‘(𝑦𝑥))) ≤ 𝐾 ↔ (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ ((abs‘(𝑦𝑥)) · 𝐾)))
184179, 183mpbid 232 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ ((abs‘(𝑦𝑥)) · 𝐾))
185182rpcnd 13051 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘(𝑦𝑥)) ∈ ℂ)
186181recnd 11261 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐾 ∈ ℂ)
187185, 186mulcomd 11254 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((abs‘(𝑦𝑥)) · 𝐾) = (𝐾 · (abs‘(𝑦𝑥))))
188184, 187breqtrd 5145 . . . 4 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥))))
189188ex 412 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥)))))
190189ralrimivva 3187 . 2 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥)))))
19173, 190jca 511 1 (𝜑 → (𝐾 ∈ ℝ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹𝑦) − (𝐹𝑥))) ≤ (𝐾 · (abs‘(𝑦𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  wss 3926  c0 4308   class class class wbr 5119  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Fun wfun 6524  wf 6526  cfv 6530  (class class class)co 7403  pm cpm 8839  supcsup 9450  cc 11125  cr 11126   · cmul 11132  *cxr 11266   < clt 11267  cle 11268  cmin 11464   / cdiv 11892  +crp 13006  (,)cioo 13360  [,]cicc 13363  abscabs 15251  TopOpenctopn 17433  topGenctg 17449  fldccnfld 21313  intcnt 22953  cnccncf 24818   D cdv 25814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818
This theorem is referenced by:  c1lip1  25952
  Copyright terms: Public domain W3C validator