MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnf Structured version   Visualization version   GIF version

Theorem dvnf 25189
Description: The N-times derivative is a function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnf ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ)

Proof of Theorem dvnf
StepHypRef Expression
1 dvnff 25185 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹):ℕ0⟶(ℂ ↑pm dom 𝐹))
21ffvelcdmda 7011 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm dom 𝐹))
323impa 1109 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm dom 𝐹))
4 cnex 11045 . . . 4 ℂ ∈ V
5 simp2 1136 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (ℂ ↑pm 𝑆))
65dmexd 7812 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → dom 𝐹 ∈ V)
7 elpm2g 8695 . . . 4 ((ℂ ∈ V ∧ dom 𝐹 ∈ V) → (((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm dom 𝐹) ↔ (((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ ∧ dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)))
84, 6, 7sylancr 587 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (((𝑆 D𝑛 𝐹)‘𝑁) ∈ (ℂ ↑pm dom 𝐹) ↔ (((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ ∧ dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹)))
93, 8mpbid 231 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ ∧ dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom 𝐹))
109simpld 495 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁):dom ((𝑆 D𝑛 𝐹)‘𝑁)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2105  Vcvv 3441  wss 3897  {cpr 4574  dom cdm 5614  wf 6469  cfv 6473  (class class class)co 7329  pm cpm 8679  cc 10962  cr 10963  0cn0 12326   D𝑛 cdvn 25126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-map 8680  df-pm 8681  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-fi 9260  df-sup 9291  df-inf 9292  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-q 12782  df-rp 12824  df-xneg 12941  df-xadd 12942  df-xmul 12943  df-icc 13179  df-fz 13333  df-seq 13815  df-exp 13876  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-struct 16937  df-slot 16972  df-ndx 16984  df-base 17002  df-plusg 17064  df-mulr 17065  df-starv 17066  df-tset 17070  df-ple 17071  df-ds 17073  df-unif 17074  df-rest 17222  df-topn 17223  df-topgen 17243  df-psmet 20687  df-xmet 20688  df-met 20689  df-bl 20690  df-mopn 20691  df-fbas 20692  df-fg 20693  df-cnfld 20696  df-top 22141  df-topon 22158  df-topsp 22180  df-bases 22194  df-cld 22268  df-ntr 22269  df-cls 22270  df-nei 22347  df-lp 22385  df-perf 22386  df-cnp 22477  df-haus 22564  df-fil 23095  df-fm 23187  df-flim 23188  df-flf 23189  df-xms 23571  df-ms 23572  df-limc 25128  df-dv 25129  df-dvn 25130
This theorem is referenced by:  dvn2bss  25192  dvnres  25193  cpnord  25197  taylfvallem1  25614  tayl0  25619  taylply2  25625  taylply  25626  dvtaylp  25627  dvntaylp  25628  dvntaylp0  25629  taylthlem1  25630  taylthlem2  25631
  Copyright terms: Public domain W3C validator