Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvnf | Structured version Visualization version GIF version |
Description: The N-times derivative is a function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvnf | β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β β0) β ((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvnff 25128 | . . . . 5 β’ ((π β {β, β} β§ πΉ β (β βpm π)) β (π Dπ πΉ):β0βΆ(β βpm dom πΉ)) | |
2 | 1 | ffvelcdmda 6989 | . . . 4 β’ (((π β {β, β} β§ πΉ β (β βpm π)) β§ π β β0) β ((π Dπ πΉ)βπ) β (β βpm dom πΉ)) |
3 | 2 | 3impa 1110 | . . 3 β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β β0) β ((π Dπ πΉ)βπ) β (β βpm dom πΉ)) |
4 | cnex 10994 | . . . 4 β’ β β V | |
5 | simp2 1137 | . . . . 5 β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β β0) β πΉ β (β βpm π)) | |
6 | 5 | dmexd 7780 | . . . 4 β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β β0) β dom πΉ β V) |
7 | elpm2g 8659 | . . . 4 β’ ((β β V β§ dom πΉ β V) β (((π Dπ πΉ)βπ) β (β βpm dom πΉ) β (((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ β§ dom ((π Dπ πΉ)βπ) β dom πΉ))) | |
8 | 4, 6, 7 | sylancr 588 | . . 3 β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β β0) β (((π Dπ πΉ)βπ) β (β βpm dom πΉ) β (((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ β§ dom ((π Dπ πΉ)βπ) β dom πΉ))) |
9 | 3, 8 | mpbid 232 | . 2 β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β β0) β (((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ β§ dom ((π Dπ πΉ)βπ) β dom πΉ)) |
10 | 9 | simpld 496 | 1 β’ ((π β {β, β} β§ πΉ β (β βpm π) β§ π β β0) β ((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1087 β wcel 2104 Vcvv 3437 β wss 3892 {cpr 4567 dom cdm 5596 βΆwf 6450 βcfv 6454 (class class class)co 7303 βpm cpm 8643 βcc 10911 βcr 10912 β0cn0 12275 Dπ cdvn 25069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7616 ax-inf2 9439 ax-cnex 10969 ax-resscn 10970 ax-1cn 10971 ax-icn 10972 ax-addcl 10973 ax-addrcl 10974 ax-mulcl 10975 ax-mulrcl 10976 ax-mulcom 10977 ax-addass 10978 ax-mulass 10979 ax-distr 10980 ax-i2m1 10981 ax-1ne0 10982 ax-1rid 10983 ax-rnegex 10984 ax-rrecex 10985 ax-cnre 10986 ax-pre-lttri 10987 ax-pre-lttrn 10988 ax-pre-ltadd 10989 ax-pre-mulgt0 10990 ax-pre-sup 10991 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5496 df-eprel 5502 df-po 5510 df-so 5511 df-fr 5551 df-we 5553 df-xp 5602 df-rel 5603 df-cnv 5604 df-co 5605 df-dm 5606 df-rn 5607 df-res 5608 df-ima 5609 df-pred 6213 df-ord 6280 df-on 6281 df-lim 6282 df-suc 6283 df-iota 6406 df-fun 6456 df-fn 6457 df-f 6458 df-f1 6459 df-fo 6460 df-f1o 6461 df-fv 6462 df-riota 7260 df-ov 7306 df-oprab 7307 df-mpo 7308 df-om 7741 df-1st 7859 df-2nd 7860 df-frecs 8124 df-wrecs 8155 df-recs 8229 df-rdg 8268 df-1o 8324 df-er 8525 df-map 8644 df-pm 8645 df-en 8761 df-dom 8762 df-sdom 8763 df-fin 8764 df-fi 9210 df-sup 9241 df-inf 9242 df-pnf 11053 df-mnf 11054 df-xr 11055 df-ltxr 11056 df-le 11057 df-sub 11249 df-neg 11250 df-div 11675 df-nn 12016 df-2 12078 df-3 12079 df-4 12080 df-5 12081 df-6 12082 df-7 12083 df-8 12084 df-9 12085 df-n0 12276 df-z 12362 df-dec 12480 df-uz 12625 df-q 12731 df-rp 12773 df-xneg 12890 df-xadd 12891 df-xmul 12892 df-icc 13128 df-fz 13282 df-seq 13764 df-exp 13825 df-cj 14851 df-re 14852 df-im 14853 df-sqrt 14987 df-abs 14988 df-struct 16889 df-slot 16924 df-ndx 16936 df-base 16954 df-plusg 17016 df-mulr 17017 df-starv 17018 df-tset 17022 df-ple 17023 df-ds 17025 df-unif 17026 df-rest 17174 df-topn 17175 df-topgen 17195 df-psmet 20630 df-xmet 20631 df-met 20632 df-bl 20633 df-mopn 20634 df-fbas 20635 df-fg 20636 df-cnfld 20639 df-top 22084 df-topon 22101 df-topsp 22123 df-bases 22137 df-cld 22211 df-ntr 22212 df-cls 22213 df-nei 22290 df-lp 22328 df-perf 22329 df-cnp 22420 df-haus 22507 df-fil 23038 df-fm 23130 df-flim 23131 df-flf 23132 df-xms 23514 df-ms 23515 df-limc 25071 df-dv 25072 df-dvn 25073 |
This theorem is referenced by: dvn2bss 25135 dvnres 25136 cpnord 25140 taylfvallem1 25557 tayl0 25562 taylply2 25568 taylply 25569 dvtaylp 25570 dvntaylp 25571 dvntaylp0 25572 taylthlem1 25573 taylthlem2 25574 |
Copyright terms: Public domain | W3C validator |