MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0tsms2 Structured version   Visualization version   GIF version

Theorem xrge0tsms2 24731
Description: Any finite or infinite sum in the nonnegative extended reals is convergent. This is a rather unique property of the set [0, +∞]; a similar theorem is not true for * or or [0, +∞). It is true for 0 ∪ {+∞}, however, or more generally any additive submonoid of [0, +∞) with +∞ adjoined. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypothesis
Ref Expression
xrge0tsms2.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
Assertion
Ref Expression
xrge0tsms2 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o)

Proof of Theorem xrge0tsms2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xrge0tsms2.g . . 3 𝐺 = (ℝ*𝑠s (0[,]+∞))
2 simpl 482 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → 𝐴𝑉)
3 simpr 484 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → 𝐹:𝐴⟶(0[,]+∞))
4 eqid 2730 . . 3 sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )
51, 2, 3, 4xrge0tsms 24730 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) = {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )})
6 xrltso 13108 . . . 4 < Or ℝ*
76supex 9422 . . 3 sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ V
87ensn1 8995 . 2 {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )} ≈ 1o
95, 8eqbrtrdi 5149 1 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3916  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  cmpt 5191  ran crn 5642  cres 5643  wf 6510  (class class class)co 7390  1oc1o 8430  cen 8918  Fincfn 8921  supcsup 9398  0cc0 11075  +∞cpnf 11212  *cxr 11214   < clt 11215  [,]cicc 13316  s cress 17207   Σg cgsu 17410  *𝑠cxrs 17470   tsums ctsu 24020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-xadd 13080  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-tset 17246  df-ple 17247  df-ds 17249  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-ordt 17471  df-xrs 17472  df-mre 17554  df-mrc 17555  df-acs 17557  df-ps 18532  df-tsr 18533  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-cntz 19256  df-cmn 19719  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-ntr 22914  df-nei 22992  df-cn 23121  df-haus 23209  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-tsms 24021
This theorem is referenced by:  xrge0tsmsbi  33010  xrge0tsmseq  33011
  Copyright terms: Public domain W3C validator