MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0tsms2 Structured version   Visualization version   GIF version

Theorem xrge0tsms2 23440
Description: Any finite or infinite sum in the nonnegative extended reals is convergent. This is a rather unique property of the set [0, +∞]; a similar theorem is not true for * or or [0, +∞). It is true for 0 ∪ {+∞}, however, or more generally any additive submonoid of [0, +∞) with +∞ adjoined. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypothesis
Ref Expression
xrge0tsms2.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
Assertion
Ref Expression
xrge0tsms2 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o)

Proof of Theorem xrge0tsms2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xrge0tsms2.g . . 3 𝐺 = (ℝ*𝑠s (0[,]+∞))
2 simpl 486 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → 𝐴𝑉)
3 simpr 488 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → 𝐹:𝐴⟶(0[,]+∞))
4 eqid 2798 . . 3 sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )
51, 2, 3, 4xrge0tsms 23439 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) = {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )})
6 xrltso 12522 . . . 4 < Or ℝ*
76supex 8911 . . 3 sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < ) ∈ V
87ensn1 8556 . 2 {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑥))), ℝ*, < )} ≈ 1o
95, 8eqbrtrdi 5069 1 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cin 3880  𝒫 cpw 4497  {csn 4525   class class class wbr 5030  cmpt 5110  ran crn 5520  cres 5521  wf 6320  (class class class)co 7135  1oc1o 8078  cen 8489  Fincfn 8492  supcsup 8888  0cc0 10526  +∞cpnf 10661  *cxr 10663   < clt 10664  [,]cicc 12729  s cress 16476   Σg cgsu 16706  *𝑠cxrs 16765   tsums ctsu 22731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-xadd 12496  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-tset 16576  df-ple 16577  df-ds 16579  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-ordt 16766  df-xrs 16767  df-mre 16849  df-mrc 16850  df-acs 16852  df-ps 17802  df-tsr 17803  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-cntz 18439  df-cmn 18900  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-ntr 21625  df-nei 21703  df-cn 21832  df-haus 21920  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-tsms 22732
This theorem is referenced by:  xrge0tsmsbi  30743  xrge0tsmseq  30744
  Copyright terms: Public domain W3C validator