MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveecn Structured version   Visualization version   GIF version

Theorem fveecn 28191
Description: The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013.)
Assertion
Ref Expression
fveecn ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴𝐼) ∈ ℂ)

Proof of Theorem fveecn
StepHypRef Expression
1 fveere 28190 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴𝐼) ∈ ℝ)
21recnd 11242 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴𝐼) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  cfv 6544  (class class class)co 7409  cc 11108  1c1 11111  ...cfz 13484  𝔼cee 28177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-ee 28180
This theorem is referenced by:  brbtwn2  28194  colinearalglem2  28196  colinearalg  28199  axcgrrflx  28203  axcgrid  28205  axsegconlem1  28206  ax5seglem1  28217  ax5seglem2  28218  ax5seglem4  28221  ax5seglem5  28222  ax5seglem6  28223  ax5seglem9  28226  axbtwnid  28228  axpasch  28230  axlowdimlem16  28246  axlowdimlem17  28247  axeuclidlem  28251  axeuclid  28252  axcontlem2  28254  axcontlem4  28256  axcontlem7  28259  axcontlem8  28260
  Copyright terms: Public domain W3C validator