| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveecn | Structured version Visualization version GIF version | ||
| Description: The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013.) |
| Ref | Expression |
|---|---|
| fveecn | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveere 28880 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℝ) | |
| 2 | 1 | recnd 11263 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 1c1 11130 ...cfz 13524 𝔼cee 28867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-ee 28870 |
| This theorem is referenced by: brbtwn2 28884 colinearalglem2 28886 colinearalg 28889 axcgrrflx 28893 axcgrid 28895 axsegconlem1 28896 ax5seglem1 28907 ax5seglem2 28908 ax5seglem4 28911 ax5seglem5 28912 ax5seglem6 28913 ax5seglem9 28916 axbtwnid 28918 axpasch 28920 axlowdimlem16 28936 axlowdimlem17 28937 axeuclidlem 28941 axeuclid 28942 axcontlem2 28944 axcontlem4 28946 axcontlem7 28949 axcontlem8 28950 |
| Copyright terms: Public domain | W3C validator |