| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fveecn | Structured version Visualization version GIF version | ||
| Description: The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013.) |
| Ref | Expression |
|---|---|
| fveecn | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveere 28865 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℝ) | |
| 2 | 1 | recnd 11162 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 1c1 11029 ...cfz 13429 𝔼cee 28852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-ee 28855 |
| This theorem is referenced by: brbtwn2 28869 colinearalglem2 28871 colinearalg 28874 axcgrrflx 28878 axcgrid 28880 axsegconlem1 28881 ax5seglem1 28892 ax5seglem2 28893 ax5seglem4 28896 ax5seglem5 28897 ax5seglem6 28898 ax5seglem9 28901 axbtwnid 28903 axpasch 28905 axlowdimlem16 28921 axlowdimlem17 28922 axeuclidlem 28926 axeuclid 28927 axcontlem2 28929 axcontlem4 28931 axcontlem7 28934 axcontlem8 28935 |
| Copyright terms: Public domain | W3C validator |