![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fveecn | Structured version Visualization version GIF version |
Description: The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013.) |
Ref | Expression |
---|---|
fveecn | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveere 28934 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℝ) | |
2 | 1 | recnd 11318 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 1c1 11185 ...cfz 13567 𝔼cee 28921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-ee 28924 |
This theorem is referenced by: brbtwn2 28938 colinearalglem2 28940 colinearalg 28943 axcgrrflx 28947 axcgrid 28949 axsegconlem1 28950 ax5seglem1 28961 ax5seglem2 28962 ax5seglem4 28965 ax5seglem5 28966 ax5seglem6 28967 ax5seglem9 28970 axbtwnid 28972 axpasch 28974 axlowdimlem16 28990 axlowdimlem17 28991 axeuclidlem 28995 axeuclid 28996 axcontlem2 28998 axcontlem4 29000 axcontlem7 29003 axcontlem8 29004 |
Copyright terms: Public domain | W3C validator |