Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveecn | Structured version Visualization version GIF version |
Description: The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013.) |
Ref | Expression |
---|---|
fveecn | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveere 27269 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℝ) | |
2 | 1 | recnd 11003 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 1c1 10872 ...cfz 13239 𝔼cee 27256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-ee 27259 |
This theorem is referenced by: brbtwn2 27273 colinearalglem2 27275 colinearalg 27278 axcgrrflx 27282 axcgrid 27284 axsegconlem1 27285 ax5seglem1 27296 ax5seglem2 27297 ax5seglem4 27300 ax5seglem5 27301 ax5seglem6 27302 ax5seglem9 27305 axbtwnid 27307 axpasch 27309 axlowdimlem16 27325 axlowdimlem17 27326 axeuclidlem 27330 axeuclid 27331 axcontlem2 27333 axcontlem4 27335 axcontlem7 27338 axcontlem8 27339 |
Copyright terms: Public domain | W3C validator |