| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeelen | Structured version Visualization version GIF version | ||
| Description: Two points are equal iff the square of the distance between them is zero. (Contributed by Scott Fenton, 10-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.) |
| Ref | Expression |
|---|---|
| eqeelen | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveere 28885 | . . . . . . . 8 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℝ) | |
| 2 | 1 | adantlr 715 | . . . . . . 7 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℝ) |
| 3 | fveere 28885 | . . . . . . . 8 ⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℝ) | |
| 4 | 3 | adantll 714 | . . . . . . 7 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℝ) |
| 5 | 2, 4 | resubcld 11670 | . . . . . 6 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℝ) |
| 6 | 5 | recnd 11268 | . . . . 5 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℂ) |
| 7 | sqeq0 14143 | . . . . 5 ⊢ (((𝐴‘𝑖) − (𝐵‘𝑖)) ∈ ℂ → ((((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ ((𝐴‘𝑖) − (𝐵‘𝑖)) = 0)) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ ((𝐴‘𝑖) − (𝐵‘𝑖)) = 0)) |
| 9 | 2 | recnd 11268 | . . . . 5 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) |
| 10 | 4 | recnd 11268 | . . . . 5 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℂ) |
| 11 | 9, 10 | subeq0ad 11609 | . . . 4 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴‘𝑖) − (𝐵‘𝑖)) = 0 ↔ (𝐴‘𝑖) = (𝐵‘𝑖))) |
| 12 | 8, 11 | bitrd 279 | . . 3 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ (𝐴‘𝑖) = (𝐵‘𝑖))) |
| 13 | 12 | ralbidva 3162 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
| 14 | fzfid 13996 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (1...𝑁) ∈ Fin) | |
| 15 | 5 | resqcld 14148 | . . 3 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴‘𝑖) − (𝐵‘𝑖))↑2) ∈ ℝ) |
| 16 | 5 | sqge0d 14160 | . . 3 ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → 0 ≤ (((𝐴‘𝑖) − (𝐵‘𝑖))↑2)) |
| 17 | 14, 15, 16 | fsum00 15819 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0)) |
| 18 | eqeefv 28887 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) | |
| 19 | 13, 17, 18 | 3bitr4rd 312 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 − cmin 11471 2c2 12300 ...cfz 13529 ↑cexp 14084 Σcsu 15707 𝔼cee 28872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ico 13373 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 df-ee 28875 |
| This theorem is referenced by: axsegconlem6 28906 ax5seglem5 28917 |
| Copyright terms: Public domain | W3C validator |