MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem4 Structured version   Visualization version   GIF version

Theorem ax5seglem4 26730
Description: Lemma for ax5seg 26736. Given two distinct points, the scaling constant in a betweenness statement is nonzero. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝐴𝐵) → 𝑇 ≠ 0)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝑖,𝑁   𝑇,𝑖

Proof of Theorem ax5seglem4
StepHypRef Expression
1 oveq2 7147 . . . . . . . . . . 11 (𝑇 = 0 → (1 − 𝑇) = (1 − 0))
2 1m0e1 11750 . . . . . . . . . . 11 (1 − 0) = 1
31, 2eqtrdi 2852 . . . . . . . . . 10 (𝑇 = 0 → (1 − 𝑇) = 1)
43oveq1d 7154 . . . . . . . . 9 (𝑇 = 0 → ((1 − 𝑇) · (𝐴𝑖)) = (1 · (𝐴𝑖)))
5 oveq1 7146 . . . . . . . . 9 (𝑇 = 0 → (𝑇 · (𝐶𝑖)) = (0 · (𝐶𝑖)))
64, 5oveq12d 7157 . . . . . . . 8 (𝑇 = 0 → (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))))
76eqeq2d 2812 . . . . . . 7 (𝑇 = 0 → ((𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ (𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
87ralbidv 3165 . . . . . 6 (𝑇 = 0 → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
98biimpac 482 . . . . 5 ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑇 = 0) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))))
10 eqeefv 26701 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
11103adant1 1127 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
12113adant3r3 1181 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
13 simplr1 1212 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
14 fveecn 26700 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
1513, 14sylancom 591 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
16 simplr3 1214 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
17 fveecn 26700 . . . . . . . . . . 11 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
1816, 17sylancom 591 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
19 mulid2 10633 . . . . . . . . . . . 12 ((𝐴𝑖) ∈ ℂ → (1 · (𝐴𝑖)) = (𝐴𝑖))
20 mul02 10811 . . . . . . . . . . . 12 ((𝐶𝑖) ∈ ℂ → (0 · (𝐶𝑖)) = 0)
2119, 20oveqan12d 7158 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = ((𝐴𝑖) + 0))
22 addid1 10813 . . . . . . . . . . . 12 ((𝐴𝑖) ∈ ℂ → ((𝐴𝑖) + 0) = (𝐴𝑖))
2322adantr 484 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐴𝑖) + 0) = (𝐴𝑖))
2421, 23eqtrd 2836 . . . . . . . . . 10 (((𝐴𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = (𝐴𝑖))
2515, 18, 24syl2anc 587 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = (𝐴𝑖))
2625eqeq1d 2803 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = (𝐵𝑖) ↔ (𝐴𝑖) = (𝐵𝑖)))
27 eqcom 2808 . . . . . . . 8 (((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = (𝐵𝑖) ↔ (𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))))
2826, 27bitr3di 289 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) = (𝐵𝑖) ↔ (𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
2928ralbidva 3164 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
3012, 29bitrd 282 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
319, 30syl5ibr 249 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑇 = 0) → 𝐴 = 𝐵))
3231expdimp 456 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → (𝑇 = 0 → 𝐴 = 𝐵))
3332necon3d 3011 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → (𝐴𝐵𝑇 ≠ 0))
34333impia 1114 1 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝐴𝐵) → 𝑇 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  cfv 6328  (class class class)co 7139  cc 10528  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  cmin 10863  cn 11629  ...cfz 12889  𝔼cee 26686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-ltxr 10673  df-sub 10865  df-ee 26689
This theorem is referenced by:  ax5seg  26736
  Copyright terms: Public domain W3C validator