Proof of Theorem ax5seglem4
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq2 7439 | . . . . . . . . . . 11
⊢ (𝑇 = 0 → (1 − 𝑇) = (1 −
0)) | 
| 2 |  | 1m0e1 12387 | . . . . . . . . . . 11
⊢ (1
− 0) = 1 | 
| 3 | 1, 2 | eqtrdi 2793 | . . . . . . . . . 10
⊢ (𝑇 = 0 → (1 − 𝑇) = 1) | 
| 4 | 3 | oveq1d 7446 | . . . . . . . . 9
⊢ (𝑇 = 0 → ((1 − 𝑇) · (𝐴‘𝑖)) = (1 · (𝐴‘𝑖))) | 
| 5 |  | oveq1 7438 | . . . . . . . . 9
⊢ (𝑇 = 0 → (𝑇 · (𝐶‘𝑖)) = (0 · (𝐶‘𝑖))) | 
| 6 | 4, 5 | oveq12d 7449 | . . . . . . . 8
⊢ (𝑇 = 0 → (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖)))) | 
| 7 | 6 | eqeq2d 2748 | . . . . . . 7
⊢ (𝑇 = 0 → ((𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ↔ (𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) | 
| 8 | 7 | ralbidv 3178 | . . . . . 6
⊢ (𝑇 = 0 → (∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) | 
| 9 | 8 | biimpac 478 | . . . . 5
⊢
((∀𝑖 ∈
(1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝑇 = 0) → ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖)))) | 
| 10 |  | eqeefv 28918 | . . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) | 
| 11 | 10 | 3adant1 1131 | . . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) | 
| 12 | 11 | 3adant3r3 1185 | . . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) | 
| 13 |  | simplr1 1216 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) | 
| 14 |  | fveecn 28917 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) | 
| 15 | 13, 14 | sylancom 588 | . . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) | 
| 16 |  | simplr3 1218 | . . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) | 
| 17 |  | fveecn 28917 | . . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶‘𝑖) ∈ ℂ) | 
| 18 | 16, 17 | sylancom 588 | . . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶‘𝑖) ∈ ℂ) | 
| 19 |  | mullid 11260 | . . . . . . . . . . . 12
⊢ ((𝐴‘𝑖) ∈ ℂ → (1 · (𝐴‘𝑖)) = (𝐴‘𝑖)) | 
| 20 |  | mul02 11439 | . . . . . . . . . . . 12
⊢ ((𝐶‘𝑖) ∈ ℂ → (0 · (𝐶‘𝑖)) = 0) | 
| 21 | 19, 20 | oveqan12d 7450 | . . . . . . . . . . 11
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐶‘𝑖) ∈ ℂ) → ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = ((𝐴‘𝑖) + 0)) | 
| 22 |  | addrid 11441 | . . . . . . . . . . . 12
⊢ ((𝐴‘𝑖) ∈ ℂ → ((𝐴‘𝑖) + 0) = (𝐴‘𝑖)) | 
| 23 | 22 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐶‘𝑖) ∈ ℂ) → ((𝐴‘𝑖) + 0) = (𝐴‘𝑖)) | 
| 24 | 21, 23 | eqtrd 2777 | . . . . . . . . . 10
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐶‘𝑖) ∈ ℂ) → ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐴‘𝑖)) | 
| 25 | 15, 18, 24 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐴‘𝑖)) | 
| 26 | 25 | eqeq1d 2739 | . . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐵‘𝑖) ↔ (𝐴‘𝑖) = (𝐵‘𝑖))) | 
| 27 |  | eqcom 2744 | . . . . . . . 8
⊢ (((1
· (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐵‘𝑖) ↔ (𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖)))) | 
| 28 | 26, 27 | bitr3di 286 | . . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) = (𝐵‘𝑖) ↔ (𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) | 
| 29 | 28 | ralbidva 3176 | . . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) | 
| 30 | 12, 29 | bitrd 279 | . . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) | 
| 31 | 9, 30 | imbitrrid 246 | . . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝑇 = 0) → 𝐴 = 𝐵)) | 
| 32 | 31 | expdimp 452 | . . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → (𝑇 = 0 → 𝐴 = 𝐵)) | 
| 33 | 32 | necon3d 2961 | . 2
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → (𝐴 ≠ 𝐵 → 𝑇 ≠ 0)) | 
| 34 | 33 | 3impia 1118 | 1
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝐴 ≠ 𝐵) → 𝑇 ≠ 0) |