Proof of Theorem ax5seglem4
Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑇 = 0 → (1 − 𝑇) = (1 −
0)) |
2 | | 1m0e1 12024 |
. . . . . . . . . . 11
⊢ (1
− 0) = 1 |
3 | 1, 2 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝑇 = 0 → (1 − 𝑇) = 1) |
4 | 3 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑇 = 0 → ((1 − 𝑇) · (𝐴‘𝑖)) = (1 · (𝐴‘𝑖))) |
5 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑇 = 0 → (𝑇 · (𝐶‘𝑖)) = (0 · (𝐶‘𝑖))) |
6 | 4, 5 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑇 = 0 → (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖)))) |
7 | 6 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑇 = 0 → ((𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ↔ (𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
8 | 7 | ralbidv 3120 |
. . . . . 6
⊢ (𝑇 = 0 → (∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
9 | 8 | biimpac 478 |
. . . . 5
⊢
((∀𝑖 ∈
(1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝑇 = 0) → ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖)))) |
10 | | eqeefv 27174 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
11 | 10 | 3adant1 1128 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
12 | 11 | 3adant3r3 1182 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
13 | | simplr1 1213 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
14 | | fveecn 27173 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) |
15 | 13, 14 | sylancom 587 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) |
16 | | simplr3 1215 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
17 | | fveecn 27173 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶‘𝑖) ∈ ℂ) |
18 | 16, 17 | sylancom 587 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶‘𝑖) ∈ ℂ) |
19 | | mulid2 10905 |
. . . . . . . . . . . 12
⊢ ((𝐴‘𝑖) ∈ ℂ → (1 · (𝐴‘𝑖)) = (𝐴‘𝑖)) |
20 | | mul02 11083 |
. . . . . . . . . . . 12
⊢ ((𝐶‘𝑖) ∈ ℂ → (0 · (𝐶‘𝑖)) = 0) |
21 | 19, 20 | oveqan12d 7274 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐶‘𝑖) ∈ ℂ) → ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = ((𝐴‘𝑖) + 0)) |
22 | | addid1 11085 |
. . . . . . . . . . . 12
⊢ ((𝐴‘𝑖) ∈ ℂ → ((𝐴‘𝑖) + 0) = (𝐴‘𝑖)) |
23 | 22 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐶‘𝑖) ∈ ℂ) → ((𝐴‘𝑖) + 0) = (𝐴‘𝑖)) |
24 | 21, 23 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐶‘𝑖) ∈ ℂ) → ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐴‘𝑖)) |
25 | 15, 18, 24 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐴‘𝑖)) |
26 | 25 | eqeq1d 2740 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐵‘𝑖) ↔ (𝐴‘𝑖) = (𝐵‘𝑖))) |
27 | | eqcom 2745 |
. . . . . . . 8
⊢ (((1
· (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐵‘𝑖) ↔ (𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖)))) |
28 | 26, 27 | bitr3di 285 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) = (𝐵‘𝑖) ↔ (𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
29 | 28 | ralbidva 3119 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
30 | 12, 29 | bitrd 278 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
31 | 9, 30 | syl5ibr 245 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝑇 = 0) → 𝐴 = 𝐵)) |
32 | 31 | expdimp 452 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → (𝑇 = 0 → 𝐴 = 𝐵)) |
33 | 32 | necon3d 2963 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → (𝐴 ≠ 𝐵 → 𝑇 ≠ 0)) |
34 | 33 | 3impia 1115 |
1
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝐴 ≠ 𝐵) → 𝑇 ≠ 0) |