MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem4 Structured version   Visualization version   GIF version

Theorem ax5seglem4 28895
Description: Lemma for ax5seg 28901. Given two distinct points, the scaling constant in a betweenness statement is nonzero. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝐴𝐵) → 𝑇 ≠ 0)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝑖,𝑁   𝑇,𝑖

Proof of Theorem ax5seglem4
StepHypRef Expression
1 oveq2 7361 . . . . . . . . . . 11 (𝑇 = 0 → (1 − 𝑇) = (1 − 0))
2 1m0e1 12262 . . . . . . . . . . 11 (1 − 0) = 1
31, 2eqtrdi 2780 . . . . . . . . . 10 (𝑇 = 0 → (1 − 𝑇) = 1)
43oveq1d 7368 . . . . . . . . 9 (𝑇 = 0 → ((1 − 𝑇) · (𝐴𝑖)) = (1 · (𝐴𝑖)))
5 oveq1 7360 . . . . . . . . 9 (𝑇 = 0 → (𝑇 · (𝐶𝑖)) = (0 · (𝐶𝑖)))
64, 5oveq12d 7371 . . . . . . . 8 (𝑇 = 0 → (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))))
76eqeq2d 2740 . . . . . . 7 (𝑇 = 0 → ((𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ (𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
87ralbidv 3152 . . . . . 6 (𝑇 = 0 → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
98biimpac 478 . . . . 5 ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑇 = 0) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))))
10 eqeefv 28866 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
11103adant1 1130 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
12113adant3r3 1185 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
13 simplr1 1216 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
14 fveecn 28865 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
1513, 14sylancom 588 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
16 simplr3 1218 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
17 fveecn 28865 . . . . . . . . . . 11 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
1816, 17sylancom 588 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
19 mullid 11133 . . . . . . . . . . . 12 ((𝐴𝑖) ∈ ℂ → (1 · (𝐴𝑖)) = (𝐴𝑖))
20 mul02 11312 . . . . . . . . . . . 12 ((𝐶𝑖) ∈ ℂ → (0 · (𝐶𝑖)) = 0)
2119, 20oveqan12d 7372 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = ((𝐴𝑖) + 0))
22 addrid 11314 . . . . . . . . . . . 12 ((𝐴𝑖) ∈ ℂ → ((𝐴𝑖) + 0) = (𝐴𝑖))
2322adantr 480 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐴𝑖) + 0) = (𝐴𝑖))
2421, 23eqtrd 2764 . . . . . . . . . 10 (((𝐴𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = (𝐴𝑖))
2515, 18, 24syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = (𝐴𝑖))
2625eqeq1d 2731 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = (𝐵𝑖) ↔ (𝐴𝑖) = (𝐵𝑖)))
27 eqcom 2736 . . . . . . . 8 (((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = (𝐵𝑖) ↔ (𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))))
2826, 27bitr3di 286 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) = (𝐵𝑖) ↔ (𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
2928ralbidva 3150 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
3012, 29bitrd 279 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
319, 30imbitrrid 246 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑇 = 0) → 𝐴 = 𝐵))
3231expdimp 452 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → (𝑇 = 0 → 𝐴 = 𝐵))
3332necon3d 2946 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → (𝐴𝐵𝑇 ≠ 0))
34333impia 1117 1 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝐴𝐵) → 𝑇 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  cn 12146  ...cfz 13428  𝔼cee 28851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173  df-sub 11367  df-ee 28854
This theorem is referenced by:  ax5seg  28901
  Copyright terms: Public domain W3C validator