MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem4 Structured version   Visualization version   GIF version

Theorem ax5seglem4 28169
Description: Lemma for ax5seg 28175. Given two distinct points, the scaling constant in a betweenness statement is nonzero. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝐴𝐵) → 𝑇 ≠ 0)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝑖,𝑁   𝑇,𝑖

Proof of Theorem ax5seglem4
StepHypRef Expression
1 oveq2 7411 . . . . . . . . . . 11 (𝑇 = 0 → (1 − 𝑇) = (1 − 0))
2 1m0e1 12328 . . . . . . . . . . 11 (1 − 0) = 1
31, 2eqtrdi 2789 . . . . . . . . . 10 (𝑇 = 0 → (1 − 𝑇) = 1)
43oveq1d 7418 . . . . . . . . 9 (𝑇 = 0 → ((1 − 𝑇) · (𝐴𝑖)) = (1 · (𝐴𝑖)))
5 oveq1 7410 . . . . . . . . 9 (𝑇 = 0 → (𝑇 · (𝐶𝑖)) = (0 · (𝐶𝑖)))
64, 5oveq12d 7421 . . . . . . . 8 (𝑇 = 0 → (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))))
76eqeq2d 2744 . . . . . . 7 (𝑇 = 0 → ((𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ (𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
87ralbidv 3178 . . . . . 6 (𝑇 = 0 → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
98biimpac 480 . . . . 5 ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑇 = 0) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))))
10 eqeefv 28140 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
11103adant1 1131 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
12113adant3r3 1185 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
13 simplr1 1216 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
14 fveecn 28139 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
1513, 14sylancom 589 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
16 simplr3 1218 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
17 fveecn 28139 . . . . . . . . . . 11 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
1816, 17sylancom 589 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
19 mullid 11208 . . . . . . . . . . . 12 ((𝐴𝑖) ∈ ℂ → (1 · (𝐴𝑖)) = (𝐴𝑖))
20 mul02 11387 . . . . . . . . . . . 12 ((𝐶𝑖) ∈ ℂ → (0 · (𝐶𝑖)) = 0)
2119, 20oveqan12d 7422 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = ((𝐴𝑖) + 0))
22 addrid 11389 . . . . . . . . . . . 12 ((𝐴𝑖) ∈ ℂ → ((𝐴𝑖) + 0) = (𝐴𝑖))
2322adantr 482 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐴𝑖) + 0) = (𝐴𝑖))
2421, 23eqtrd 2773 . . . . . . . . . 10 (((𝐴𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = (𝐴𝑖))
2515, 18, 24syl2anc 585 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = (𝐴𝑖))
2625eqeq1d 2735 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = (𝐵𝑖) ↔ (𝐴𝑖) = (𝐵𝑖)))
27 eqcom 2740 . . . . . . . 8 (((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))) = (𝐵𝑖) ↔ (𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖))))
2826, 27bitr3di 286 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) = (𝐵𝑖) ↔ (𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
2928ralbidva 3176 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
3012, 29bitrd 279 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = ((1 · (𝐴𝑖)) + (0 · (𝐶𝑖)))))
319, 30imbitrrid 245 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝑇 = 0) → 𝐴 = 𝐵))
3231expdimp 454 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → (𝑇 = 0 → 𝐴 = 𝐵))
3332necon3d 2962 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖)))) → (𝐴𝐵𝑇 ≠ 0))
34333impia 1118 1 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑇) · (𝐴𝑖)) + (𝑇 · (𝐶𝑖))) ∧ 𝐴𝐵) → 𝑇 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  cfv 6539  (class class class)co 7403  cc 11103  0cc0 11105  1c1 11106   + caddc 11108   · cmul 11110  cmin 11439  cn 12207  ...cfz 13479  𝔼cee 28125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-br 5147  df-opab 5209  df-mpt 5230  df-id 5572  df-po 5586  df-so 5587  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11245  df-mnf 11246  df-ltxr 11248  df-sub 11441  df-ee 28128
This theorem is referenced by:  ax5seg  28175
  Copyright terms: Public domain W3C validator