Proof of Theorem ax5seglem4
Step | Hyp | Ref
| Expression |
1 | | oveq2 6930 |
. . . . . . . . . . 11
⊢ (𝑇 = 0 → (1 − 𝑇) = (1 −
0)) |
2 | | 1m0e1 11503 |
. . . . . . . . . . 11
⊢ (1
− 0) = 1 |
3 | 1, 2 | syl6eq 2830 |
. . . . . . . . . 10
⊢ (𝑇 = 0 → (1 − 𝑇) = 1) |
4 | 3 | oveq1d 6937 |
. . . . . . . . 9
⊢ (𝑇 = 0 → ((1 − 𝑇) · (𝐴‘𝑖)) = (1 · (𝐴‘𝑖))) |
5 | | oveq1 6929 |
. . . . . . . . 9
⊢ (𝑇 = 0 → (𝑇 · (𝐶‘𝑖)) = (0 · (𝐶‘𝑖))) |
6 | 4, 5 | oveq12d 6940 |
. . . . . . . 8
⊢ (𝑇 = 0 → (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖)))) |
7 | 6 | eqeq2d 2788 |
. . . . . . 7
⊢ (𝑇 = 0 → ((𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ↔ (𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
8 | 7 | ralbidv 3168 |
. . . . . 6
⊢ (𝑇 = 0 → (∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
9 | 8 | biimpac 472 |
. . . . 5
⊢
((∀𝑖 ∈
(1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝑇 = 0) → ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖)))) |
10 | | eqeefv 26252 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
11 | 10 | 3adant1 1121 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
12 | 11 | 3adant3r3 1192 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
13 | | eqcom 2785 |
. . . . . . . 8
⊢ (((1
· (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐵‘𝑖) ↔ (𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖)))) |
14 | | simplr1 1232 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
15 | | fveecn 26251 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) |
16 | 14, 15 | sylancom 582 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) |
17 | | simplr3 1236 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
18 | | fveecn 26251 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶‘𝑖) ∈ ℂ) |
19 | 17, 18 | sylancom 582 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶‘𝑖) ∈ ℂ) |
20 | | mulid2 10375 |
. . . . . . . . . . . 12
⊢ ((𝐴‘𝑖) ∈ ℂ → (1 · (𝐴‘𝑖)) = (𝐴‘𝑖)) |
21 | | mul02 10554 |
. . . . . . . . . . . 12
⊢ ((𝐶‘𝑖) ∈ ℂ → (0 · (𝐶‘𝑖)) = 0) |
22 | 20, 21 | oveqan12d 6941 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐶‘𝑖) ∈ ℂ) → ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = ((𝐴‘𝑖) + 0)) |
23 | | addid1 10556 |
. . . . . . . . . . . 12
⊢ ((𝐴‘𝑖) ∈ ℂ → ((𝐴‘𝑖) + 0) = (𝐴‘𝑖)) |
24 | 23 | adantr 474 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐶‘𝑖) ∈ ℂ) → ((𝐴‘𝑖) + 0) = (𝐴‘𝑖)) |
25 | 22, 24 | eqtrd 2814 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐶‘𝑖) ∈ ℂ) → ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐴‘𝑖)) |
26 | 16, 19, 25 | syl2anc 579 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐴‘𝑖)) |
27 | 26 | eqeq1d 2780 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐵‘𝑖) ↔ (𝐴‘𝑖) = (𝐵‘𝑖))) |
28 | 13, 27 | syl5rbbr 278 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) = (𝐵‘𝑖) ↔ (𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
29 | 28 | ralbidva 3167 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
30 | 12, 29 | bitrd 271 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
31 | 9, 30 | syl5ibr 238 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝑇 = 0) → 𝐴 = 𝐵)) |
32 | 31 | expdimp 446 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → (𝑇 = 0 → 𝐴 = 𝐵)) |
33 | 32 | necon3d 2990 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → (𝐴 ≠ 𝐵 → 𝑇 ≠ 0)) |
34 | 33 | 3impia 1106 |
1
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝐴 ≠ 𝐵) → 𝑇 ≠ 0) |