Proof of Theorem ax5seglem4
| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑇 = 0 → (1 − 𝑇) = (1 −
0)) |
| 2 | | 1m0e1 12366 |
. . . . . . . . . . 11
⊢ (1
− 0) = 1 |
| 3 | 1, 2 | eqtrdi 2787 |
. . . . . . . . . 10
⊢ (𝑇 = 0 → (1 − 𝑇) = 1) |
| 4 | 3 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝑇 = 0 → ((1 − 𝑇) · (𝐴‘𝑖)) = (1 · (𝐴‘𝑖))) |
| 5 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑇 = 0 → (𝑇 · (𝐶‘𝑖)) = (0 · (𝐶‘𝑖))) |
| 6 | 4, 5 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝑇 = 0 → (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖)))) |
| 7 | 6 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑇 = 0 → ((𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ↔ (𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
| 8 | 7 | ralbidv 3164 |
. . . . . 6
⊢ (𝑇 = 0 → (∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
| 9 | 8 | biimpac 478 |
. . . . 5
⊢
((∀𝑖 ∈
(1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝑇 = 0) → ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖)))) |
| 10 | | eqeefv 28887 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
| 11 | 10 | 3adant1 1130 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
| 12 | 11 | 3adant3r3 1185 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
| 13 | | simplr1 1216 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
| 14 | | fveecn 28886 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) |
| 15 | 13, 14 | sylancom 588 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴‘𝑖) ∈ ℂ) |
| 16 | | simplr3 1218 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
| 17 | | fveecn 28886 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶‘𝑖) ∈ ℂ) |
| 18 | 16, 17 | sylancom 588 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶‘𝑖) ∈ ℂ) |
| 19 | | mullid 11239 |
. . . . . . . . . . . 12
⊢ ((𝐴‘𝑖) ∈ ℂ → (1 · (𝐴‘𝑖)) = (𝐴‘𝑖)) |
| 20 | | mul02 11418 |
. . . . . . . . . . . 12
⊢ ((𝐶‘𝑖) ∈ ℂ → (0 · (𝐶‘𝑖)) = 0) |
| 21 | 19, 20 | oveqan12d 7429 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐶‘𝑖) ∈ ℂ) → ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = ((𝐴‘𝑖) + 0)) |
| 22 | | addrid 11420 |
. . . . . . . . . . . 12
⊢ ((𝐴‘𝑖) ∈ ℂ → ((𝐴‘𝑖) + 0) = (𝐴‘𝑖)) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐶‘𝑖) ∈ ℂ) → ((𝐴‘𝑖) + 0) = (𝐴‘𝑖)) |
| 24 | 21, 23 | eqtrd 2771 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑖) ∈ ℂ ∧ (𝐶‘𝑖) ∈ ℂ) → ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐴‘𝑖)) |
| 25 | 15, 18, 24 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐴‘𝑖)) |
| 26 | 25 | eqeq1d 2738 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐵‘𝑖) ↔ (𝐴‘𝑖) = (𝐵‘𝑖))) |
| 27 | | eqcom 2743 |
. . . . . . . 8
⊢ (((1
· (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))) = (𝐵‘𝑖) ↔ (𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖)))) |
| 28 | 26, 27 | bitr3di 286 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) = (𝐵‘𝑖) ↔ (𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
| 29 | 28 | ralbidva 3162 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
| 30 | 12, 29 | bitrd 279 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = ((1 · (𝐴‘𝑖)) + (0 · (𝐶‘𝑖))))) |
| 31 | 9, 30 | imbitrrid 246 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝑇 = 0) → 𝐴 = 𝐵)) |
| 32 | 31 | expdimp 452 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → (𝑇 = 0 → 𝐴 = 𝐵)) |
| 33 | 32 | necon3d 2954 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖)))) → (𝐴 ≠ 𝐵 → 𝑇 ≠ 0)) |
| 34 | 33 | 3impia 1117 |
1
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝐴 ≠ 𝐵) → 𝑇 ≠ 0) |