MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axbtwnid Structured version   Visualization version   GIF version

Theorem axbtwnid 28744
Description: Points are indivisible. That is, if 𝐴 lies between 𝐵 and 𝐵, then 𝐴 = 𝐵. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axbtwnid ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐵⟩ → 𝐴 = 𝐵))

Proof of Theorem axbtwnid
Dummy variables 𝑡 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2 simp3 1136 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
3 brbtwn 28704 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐵⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖)))))
41, 2, 2, 3syl3anc 1369 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐵⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖)))))
5 elicc01 13470 . . . . . 6 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
65simp1bi 1143 . . . . 5 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
76recnd 11267 . . . 4 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
8 eqeefv 28708 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
983adant1 1128 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
109adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖)))
11 ax-1cn 11191 . . . . . . . . . . . 12 1 ∈ ℂ
12 npcan 11494 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → ((1 − 𝑡) + 𝑡) = 1)
1311, 12mpan 689 . . . . . . . . . . 11 (𝑡 ∈ ℂ → ((1 − 𝑡) + 𝑡) = 1)
1413ad2antlr 726 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) + 𝑡) = 1)
1514oveq1d 7430 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) + 𝑡) · (𝐵𝑖)) = (1 · (𝐵𝑖)))
16 subcl 11484 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
1711, 16mpan 689 . . . . . . . . . . 11 (𝑡 ∈ ℂ → (1 − 𝑡) ∈ ℂ)
1817ad2antlr 726 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℂ)
19 simplr 768 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ)
20 simpll3 1212 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
21 fveecn 28707 . . . . . . . . . . 11 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
2220, 21sylancom 587 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
2318, 19, 22adddird 11264 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) + 𝑡) · (𝐵𝑖)) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖))))
2422mullidd 11257 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (1 · (𝐵𝑖)) = (𝐵𝑖))
2515, 23, 243eqtr3rd 2777 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖))))
2625eqeq2d 2739 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) = (𝐵𝑖) ↔ (𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖)))))
2726ralbidva 3171 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (𝐵𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖)))))
2810, 27bitrd 279 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖)))))
2928biimprd 247 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖))) → 𝐴 = 𝐵))
307, 29sylan2 592 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖))) → 𝐴 = 𝐵))
3130rexlimdva 3151 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴𝑖) = (((1 − 𝑡) · (𝐵𝑖)) + (𝑡 · (𝐵𝑖))) → 𝐴 = 𝐵))
324, 31sylbid 239 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐵⟩ → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3057  wrex 3066  cop 4631   class class class wbr 5143  cfv 6543  (class class class)co 7415  cc 11131  cr 11132  0cc0 11133  1c1 11134   + caddc 11136   · cmul 11138  cle 11274  cmin 11469  cn 12237  [,]cicc 13354  ...cfz 13511  𝔼cee 28693   Btwn cbtwn 28694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-z 12584  df-uz 12848  df-icc 13358  df-fz 13512  df-ee 28696  df-btwn 28697
This theorem is referenced by:  eengtrkg  28791  btwncomim  35604  btwnswapid  35608  btwnintr  35610  btwnexch3  35611  ifscgr  35635  idinside  35675  btwnconn1lem12  35689  outsideofrflx  35718
  Copyright terms: Public domain W3C validator