Step | Hyp | Ref
| Expression |
1 | | simp2 1135 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
2 | | simp3 1136 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) |
3 | | brbtwn 27248 |
. . 3
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐵〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))))) |
4 | 1, 2, 2, 3 | syl3anc 1369 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐵〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))))) |
5 | | elicc01 13180 |
. . . . . 6
⊢ (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤
𝑡 ∧ 𝑡 ≤ 1)) |
6 | 5 | simp1bi 1143 |
. . . . 5
⊢ (𝑡 ∈ (0[,]1) → 𝑡 ∈
ℝ) |
7 | 6 | recnd 10987 |
. . . 4
⊢ (𝑡 ∈ (0[,]1) → 𝑡 ∈
ℂ) |
8 | | eqeefv 27252 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
9 | 8 | 3adant1 1128 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
10 | 9 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
11 | | ax-1cn 10913 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
12 | | npcan 11213 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ 𝑡
∈ ℂ) → ((1 − 𝑡) + 𝑡) = 1) |
13 | 11, 12 | mpan 686 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℂ → ((1
− 𝑡) + 𝑡) = 1) |
14 | 13 | ad2antlr 723 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) + 𝑡) = 1) |
15 | 14 | oveq1d 7283 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) + 𝑡) · (𝐵‘𝑖)) = (1 · (𝐵‘𝑖))) |
16 | | subcl 11203 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ 𝑡
∈ ℂ) → (1 − 𝑡) ∈ ℂ) |
17 | 11, 16 | mpan 686 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℂ → (1
− 𝑡) ∈
ℂ) |
18 | 17 | ad2antlr 723 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℂ) |
19 | | simplr 765 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ) |
20 | | simpll3 1212 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) |
21 | | fveecn 27251 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℂ) |
22 | 20, 21 | sylancom 587 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℂ) |
23 | 18, 19, 22 | adddird 10984 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) + 𝑡) · (𝐵‘𝑖)) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖)))) |
24 | 22 | mulid2d 10977 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (1 · (𝐵‘𝑖)) = (𝐵‘𝑖)) |
25 | 15, 23, 24 | 3eqtr3rd 2788 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖)))) |
26 | 25 | eqeq2d 2750 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) = (𝐵‘𝑖) ↔ (𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))))) |
27 | 26 | ralbidva 3121 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))))) |
28 | 10, 27 | bitrd 278 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))))) |
29 | 28 | biimprd 247 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))) → 𝐴 = 𝐵)) |
30 | 7, 29 | sylan2 592 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))) → 𝐴 = 𝐵)) |
31 | 30 | rexlimdva 3214 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))) → 𝐴 = 𝐵)) |
32 | 4, 31 | sylbid 239 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐵〉 → 𝐴 = 𝐵)) |