| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1137 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
| 2 | | simp3 1138 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) |
| 3 | | brbtwn 28883 |
. . 3
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐵〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))))) |
| 4 | 1, 2, 2, 3 | syl3anc 1373 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐵〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))))) |
| 5 | | elicc01 13488 |
. . . . . 6
⊢ (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤
𝑡 ∧ 𝑡 ≤ 1)) |
| 6 | 5 | simp1bi 1145 |
. . . . 5
⊢ (𝑡 ∈ (0[,]1) → 𝑡 ∈
ℝ) |
| 7 | 6 | recnd 11268 |
. . . 4
⊢ (𝑡 ∈ (0[,]1) → 𝑡 ∈
ℂ) |
| 8 | | eqeefv 28887 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
| 9 | 8 | 3adant1 1130 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
| 10 | 9 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
| 11 | | ax-1cn 11192 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 12 | | npcan 11496 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ 𝑡
∈ ℂ) → ((1 − 𝑡) + 𝑡) = 1) |
| 13 | 11, 12 | mpan 690 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℂ → ((1
− 𝑡) + 𝑡) = 1) |
| 14 | 13 | ad2antlr 727 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) + 𝑡) = 1) |
| 15 | 14 | oveq1d 7425 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) + 𝑡) · (𝐵‘𝑖)) = (1 · (𝐵‘𝑖))) |
| 16 | | subcl 11486 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ 𝑡
∈ ℂ) → (1 − 𝑡) ∈ ℂ) |
| 17 | 11, 16 | mpan 690 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℂ → (1
− 𝑡) ∈
ℂ) |
| 18 | 17 | ad2antlr 727 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℂ) |
| 19 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ) |
| 20 | | simpll3 1215 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) |
| 21 | | fveecn 28886 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℂ) |
| 22 | 20, 21 | sylancom 588 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) ∈ ℂ) |
| 23 | 18, 19, 22 | adddird 11265 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) + 𝑡) · (𝐵‘𝑖)) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖)))) |
| 24 | 22 | mullidd 11258 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (1 · (𝐵‘𝑖)) = (𝐵‘𝑖)) |
| 25 | 15, 23, 24 | 3eqtr3rd 2780 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖)))) |
| 26 | 25 | eqeq2d 2747 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴‘𝑖) = (𝐵‘𝑖) ↔ (𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))))) |
| 27 | 26 | ralbidva 3162 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))))) |
| 28 | 10, 27 | bitrd 279 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))))) |
| 29 | 28 | biimprd 248 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ ℂ) → (∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))) → 𝐴 = 𝐵)) |
| 30 | 7, 29 | sylan2 593 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑡 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))) → 𝐴 = 𝐵)) |
| 31 | 30 | rexlimdva 3142 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐵‘𝑖))) → 𝐴 = 𝐵)) |
| 32 | 4, 31 | sylbid 240 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐵〉 → 𝐴 = 𝐵)) |