MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhp0cl Structured version   Visualization version   GIF version

Theorem mhp0cl 22168
Description: The zero polynomial is homogeneous. Under df-mhp 22158, it has any (nonnegative integer) degree which loosely corresponds to the value "undefined". The values -∞ and 0 are also used in Metamath (by df-mdeg 26109 and df-dgr 26245 respectively) and the literature: https://math.stackexchange.com/a/1796314/593843 26245. (Contributed by SN, 12-Sep-2023.)
Hypotheses
Ref Expression
mhp0cl.h 𝐻 = (𝐼 mHomP 𝑅)
mhp0cl.0 0 = (0g𝑅)
mhp0cl.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhp0cl.i (𝜑𝐼𝑉)
mhp0cl.r (𝜑𝑅 ∈ Grp)
mhp0cl.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhp0cl (𝜑 → (𝐷 × { 0 }) ∈ (𝐻𝑁))
Distinct variable group:   ,𝐼
Allowed substitution hints:   𝜑()   𝐷()   𝑅()   𝐻()   𝑁()   𝑉()   0 ()

Proof of Theorem mhp0cl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 mhp0cl.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 eqid 2735 . 2 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
3 eqid 2735 . 2 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
4 mhp0cl.0 . 2 0 = (0g𝑅)
5 mhp0cl.d . 2 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhp0cl.n . 2 (𝜑𝑁 ∈ ℕ0)
7 eqid 2735 . . . 4 (0g‘(𝐼 mPoly 𝑅)) = (0g‘(𝐼 mPoly 𝑅))
8 mhp0cl.i . . . 4 (𝜑𝐼𝑉)
9 mhp0cl.r . . . 4 (𝜑𝑅 ∈ Grp)
102, 5, 4, 7, 8, 9mpl0 22044 . . 3 (𝜑 → (0g‘(𝐼 mPoly 𝑅)) = (𝐷 × { 0 }))
112mplgrp 22055 . . . . 5 ((𝐼𝑉𝑅 ∈ Grp) → (𝐼 mPoly 𝑅) ∈ Grp)
128, 9, 11syl2anc 584 . . . 4 (𝜑 → (𝐼 mPoly 𝑅) ∈ Grp)
133, 7grpidcl 18996 . . . 4 ((𝐼 mPoly 𝑅) ∈ Grp → (0g‘(𝐼 mPoly 𝑅)) ∈ (Base‘(𝐼 mPoly 𝑅)))
1412, 13syl 17 . . 3 (𝜑 → (0g‘(𝐼 mPoly 𝑅)) ∈ (Base‘(𝐼 mPoly 𝑅)))
1510, 14eqeltrrd 2840 . 2 (𝜑 → (𝐷 × { 0 }) ∈ (Base‘(𝐼 mPoly 𝑅)))
16 fczsupp0 8217 . . . 4 ((𝐷 × { 0 }) supp 0 ) = ∅
17 0ss 4406 . . . 4 ∅ ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
1816, 17eqsstri 4030 . . 3 ((𝐷 × { 0 }) supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
1918a1i 11 . 2 (𝜑 → ((𝐷 × { 0 }) supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
201, 2, 3, 4, 5, 6, 15, 19ismhp2 22163 1 (𝜑 → (𝐷 × { 0 }) ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  {crab 3433  wss 3963  c0 4339  {csn 4631   × cxp 5687  ccnv 5688  cima 5692  cfv 6563  (class class class)co 7431   supp csupp 8184  m cmap 8865  Fincfn 8984  cn 12264  0cn0 12524  Basecbs 17245  s cress 17274  0gc0g 17486   Σg cgsu 17487  Grpcgrp 18964  fldccnfld 21382   mPoly cmpl 21944   mHomP cmhp 22151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-psr 21947  df-mpl 21949  df-mhp 22158
This theorem is referenced by:  mhpsubg  22175  mhpind  42581  prjcrv0  42620
  Copyright terms: Public domain W3C validator