![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhp0cl | Structured version Visualization version GIF version |
Description: The zero polynomial is homogeneous. (Contributed by SN, 12-Sep-2023.) |
Ref | Expression |
---|---|
mhp0cl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhp0cl.0 | ⊢ 0 = (0g‘𝑅) |
mhp0cl.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mhp0cl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhp0cl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
mhp0cl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
mhp0cl | ⊢ (𝜑 → (𝐷 × { 0 }) ∈ (𝐻‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2793 | . . . 4 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
2 | mhp0cl.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
3 | mhp0cl.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
4 | eqid 2793 | . . . 4 ⊢ (0g‘(𝐼 mPoly 𝑅)) = (0g‘(𝐼 mPoly 𝑅)) | |
5 | mhp0cl.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
6 | mhp0cl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
7 | 1, 2, 3, 4, 5, 6 | mpl0 19897 | . . 3 ⊢ (𝜑 → (0g‘(𝐼 mPoly 𝑅)) = (𝐷 × { 0 })) |
8 | 1 | mplgrp 19906 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → (𝐼 mPoly 𝑅) ∈ Grp) |
9 | 5, 6, 8 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐼 mPoly 𝑅) ∈ Grp) |
10 | eqid 2793 | . . . . 5 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
11 | 10, 4 | grpidcl 17877 | . . . 4 ⊢ ((𝐼 mPoly 𝑅) ∈ Grp → (0g‘(𝐼 mPoly 𝑅)) ∈ (Base‘(𝐼 mPoly 𝑅))) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝜑 → (0g‘(𝐼 mPoly 𝑅)) ∈ (Base‘(𝐼 mPoly 𝑅))) |
13 | 7, 12 | eqeltrrd 2882 | . 2 ⊢ (𝜑 → (𝐷 × { 0 }) ∈ (Base‘(𝐼 mPoly 𝑅))) |
14 | fczsupp0 7701 | . . . 4 ⊢ ((𝐷 × { 0 }) supp 0 ) = ∅ | |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐷 × { 0 }) supp 0 ) = ∅) |
16 | 0ss 4264 | . . 3 ⊢ ∅ ⊆ {𝑔 ∈ 𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔‘𝑗) = 𝑁} | |
17 | 15, 16 | syl6eqss 3937 | . 2 ⊢ (𝜑 → ((𝐷 × { 0 }) supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔‘𝑗) = 𝑁}) |
18 | mhp0cl.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
19 | mhp0cl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
20 | 18, 1, 10, 3, 2, 5, 6, 19 | ismhp 20005 | . 2 ⊢ (𝜑 → ((𝐷 × { 0 }) ∈ (𝐻‘𝑁) ↔ ((𝐷 × { 0 }) ∈ (Base‘(𝐼 mPoly 𝑅)) ∧ ((𝐷 × { 0 }) supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔‘𝑗) = 𝑁}))) |
21 | 13, 17, 20 | mpbir2and 709 | 1 ⊢ (𝜑 → (𝐷 × { 0 }) ∈ (𝐻‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1520 ∈ wcel 2079 {crab 3107 ⊆ wss 3854 ∅c0 4206 {csn 4466 × cxp 5433 ◡ccnv 5434 “ cima 5438 ‘cfv 6217 (class class class)co 7007 supp csupp 7672 ↑𝑚 cmap 8247 Fincfn 8347 ℕcn 11475 ℕ0cn0 11734 Σcsu 14864 Basecbs 16300 0gc0g 16530 Grpcgrp 17849 mPoly cmpl 19809 mHomP cmhp 19993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-of 7258 df-om 7428 df-1st 7536 df-2nd 7537 df-supp 7673 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-1o 7944 df-oadd 7948 df-er 8130 df-map 8249 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-fsupp 8670 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-2 11537 df-3 11538 df-4 11539 df-5 11540 df-6 11541 df-7 11542 df-8 11543 df-9 11544 df-n0 11735 df-z 11819 df-uz 12083 df-fz 12732 df-struct 16302 df-ndx 16303 df-slot 16304 df-base 16306 df-sets 16307 df-ress 16308 df-plusg 16395 df-mulr 16396 df-sca 16398 df-vsca 16399 df-tset 16401 df-0g 16532 df-mgm 17669 df-sgrp 17711 df-mnd 17722 df-grp 17852 df-minusg 17853 df-subg 18018 df-psr 19812 df-mpl 19814 df-mhp 19997 |
This theorem is referenced by: mhpsubg 20011 |
Copyright terms: Public domain | W3C validator |