MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhp0cl Structured version   Visualization version   GIF version

Theorem mhp0cl 21534
Description: The zero polynomial is homogeneous. Under df-mhp 21521, it has any (nonnegative integer) degree which loosely corresponds to the value "undefined". The values -∞ and 0 are also used in Metamath (by df-mdeg 25415 and df-dgr 25550 respectively) and the literature: https://math.stackexchange.com/a/1796314/593843 25550. (Contributed by SN, 12-Sep-2023.)
Hypotheses
Ref Expression
mhp0cl.h 𝐻 = (𝐼 mHomP 𝑅)
mhp0cl.0 0 = (0g𝑅)
mhp0cl.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhp0cl.i (𝜑𝐼𝑉)
mhp0cl.r (𝜑𝑅 ∈ Grp)
mhp0cl.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhp0cl (𝜑 → (𝐷 × { 0 }) ∈ (𝐻𝑁))
Distinct variable group:   ,𝐼
Allowed substitution hints:   𝜑()   𝐷()   𝑅()   𝐻()   𝑁()   𝑉()   0 ()

Proof of Theorem mhp0cl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 mhp0cl.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 eqid 2736 . 2 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
3 eqid 2736 . 2 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
4 mhp0cl.0 . 2 0 = (0g𝑅)
5 mhp0cl.d . 2 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhp0cl.i . 2 (𝜑𝐼𝑉)
7 mhp0cl.r . 2 (𝜑𝑅 ∈ Grp)
8 mhp0cl.n . 2 (𝜑𝑁 ∈ ℕ0)
9 eqid 2736 . . . 4 (0g‘(𝐼 mPoly 𝑅)) = (0g‘(𝐼 mPoly 𝑅))
102, 5, 4, 9, 6, 7mpl0 21410 . . 3 (𝜑 → (0g‘(𝐼 mPoly 𝑅)) = (𝐷 × { 0 }))
112mplgrp 21420 . . . . 5 ((𝐼𝑉𝑅 ∈ Grp) → (𝐼 mPoly 𝑅) ∈ Grp)
126, 7, 11syl2anc 584 . . . 4 (𝜑 → (𝐼 mPoly 𝑅) ∈ Grp)
133, 9grpidcl 18777 . . . 4 ((𝐼 mPoly 𝑅) ∈ Grp → (0g‘(𝐼 mPoly 𝑅)) ∈ (Base‘(𝐼 mPoly 𝑅)))
1412, 13syl 17 . . 3 (𝜑 → (0g‘(𝐼 mPoly 𝑅)) ∈ (Base‘(𝐼 mPoly 𝑅)))
1510, 14eqeltrrd 2839 . 2 (𝜑 → (𝐷 × { 0 }) ∈ (Base‘(𝐼 mPoly 𝑅)))
16 fczsupp0 8123 . . . 4 ((𝐷 × { 0 }) supp 0 ) = ∅
17 0ss 4356 . . . 4 ∅ ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
1816, 17eqsstri 3978 . . 3 ((𝐷 × { 0 }) supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
1918a1i 11 . 2 (𝜑 → ((𝐷 × { 0 }) supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
201, 2, 3, 4, 5, 6, 7, 8, 15, 19ismhp2 21530 1 (𝜑 → (𝐷 × { 0 }) ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  {crab 3407  wss 3910  c0 4282  {csn 4586   × cxp 5631  ccnv 5632  cima 5636  cfv 6496  (class class class)co 7356   supp csupp 8091  m cmap 8764  Fincfn 8882  cn 12152  0cn0 12412  Basecbs 17082  s cress 17111  0gc0g 17320   Σg cgsu 17321  Grpcgrp 18747  fldccnfld 20794   mPoly cmpl 21306   mHomP cmhp 21517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671  ax-cnex 11106  ax-resscn 11107  ax-1cn 11108  ax-icn 11109  ax-addcl 11110  ax-addrcl 11111  ax-mulcl 11112  ax-mulrcl 11113  ax-mulcom 11114  ax-addass 11115  ax-mulass 11116  ax-distr 11117  ax-i2m1 11118  ax-1ne0 11119  ax-1rid 11120  ax-rnegex 11121  ax-rrecex 11122  ax-cnre 11123  ax-pre-lttri 11124  ax-pre-lttrn 11125  ax-pre-ltadd 11126  ax-pre-mulgt0 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-of 7616  df-om 7802  df-1st 7920  df-2nd 7921  df-supp 8092  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-1o 8411  df-er 8647  df-map 8766  df-ixp 8835  df-en 8883  df-dom 8884  df-sdom 8885  df-fin 8886  df-fsupp 9305  df-sup 9377  df-pnf 11190  df-mnf 11191  df-xr 11192  df-ltxr 11193  df-le 11194  df-sub 11386  df-neg 11387  df-nn 12153  df-2 12215  df-3 12216  df-4 12217  df-5 12218  df-6 12219  df-7 12220  df-8 12221  df-9 12222  df-n0 12413  df-z 12499  df-dec 12618  df-uz 12763  df-fz 13424  df-struct 17018  df-sets 17035  df-slot 17053  df-ndx 17065  df-base 17083  df-ress 17112  df-plusg 17145  df-mulr 17146  df-sca 17148  df-vsca 17149  df-ip 17150  df-tset 17151  df-ple 17152  df-ds 17154  df-hom 17156  df-cco 17157  df-0g 17322  df-prds 17328  df-pws 17330  df-mgm 18496  df-sgrp 18545  df-mnd 18556  df-grp 18750  df-minusg 18751  df-subg 18923  df-psr 21309  df-mpl 21311  df-mhp 21521
This theorem is referenced by:  mhpsubg  21541  mhpind  40747  prjcrv0  40949
  Copyright terms: Public domain W3C validator