Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mhp0cl | Structured version Visualization version GIF version |
Description: The zero polynomial is homogeneous. Under df-mhp 20876, it has any (nonnegative integer) degree which loosely corresponds to the value "undefined". The values -∞ and 0 are also used in Metamath (by df-mdeg 24752 and df-dgr 24887 respectively) and the literature: https://math.stackexchange.com/a/1796314/593843 24887. (Contributed by SN, 12-Sep-2023.) |
Ref | Expression |
---|---|
mhp0cl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhp0cl.0 | ⊢ 0 = (0g‘𝑅) |
mhp0cl.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
mhp0cl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhp0cl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
mhp0cl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
mhp0cl | ⊢ (𝜑 → (𝐷 × { 0 }) ∈ (𝐻‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhp0cl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | eqid 2758 | . 2 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
3 | eqid 2758 | . 2 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
4 | mhp0cl.0 | . 2 ⊢ 0 = (0g‘𝑅) | |
5 | mhp0cl.d | . 2 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | mhp0cl.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | mhp0cl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
8 | mhp0cl.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | eqid 2758 | . . . 4 ⊢ (0g‘(𝐼 mPoly 𝑅)) = (0g‘(𝐼 mPoly 𝑅)) | |
10 | 2, 5, 4, 9, 6, 7 | mpl0 20771 | . . 3 ⊢ (𝜑 → (0g‘(𝐼 mPoly 𝑅)) = (𝐷 × { 0 })) |
11 | 2 | mplgrp 20781 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → (𝐼 mPoly 𝑅) ∈ Grp) |
12 | 6, 7, 11 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝐼 mPoly 𝑅) ∈ Grp) |
13 | 3, 9 | grpidcl 18198 | . . . 4 ⊢ ((𝐼 mPoly 𝑅) ∈ Grp → (0g‘(𝐼 mPoly 𝑅)) ∈ (Base‘(𝐼 mPoly 𝑅))) |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (0g‘(𝐼 mPoly 𝑅)) ∈ (Base‘(𝐼 mPoly 𝑅))) |
15 | 10, 14 | eqeltrrd 2853 | . 2 ⊢ (𝜑 → (𝐷 × { 0 }) ∈ (Base‘(𝐼 mPoly 𝑅))) |
16 | fczsupp0 7867 | . . . 4 ⊢ ((𝐷 × { 0 }) supp 0 ) = ∅ | |
17 | 0ss 4292 | . . . 4 ⊢ ∅ ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} | |
18 | 16, 17 | eqsstri 3926 | . . 3 ⊢ ((𝐷 × { 0 }) supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} |
19 | 18 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐷 × { 0 }) supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 15, 19 | ismhp2 20885 | 1 ⊢ (𝜑 → (𝐷 × { 0 }) ∈ (𝐻‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 {crab 3074 ⊆ wss 3858 ∅c0 4225 {csn 4522 × cxp 5522 ◡ccnv 5523 “ cima 5527 ‘cfv 6335 (class class class)co 7150 supp csupp 7835 ↑m cmap 8416 Fincfn 8527 ℕcn 11674 ℕ0cn0 11934 Basecbs 16541 ↾s cress 16542 0gc0g 16771 Σg cgsu 16772 Grpcgrp 18169 ℂfldccnfld 20166 mPoly cmpl 20668 mHomP cmhp 20872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-tset 16642 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-subg 18343 df-psr 20671 df-mpl 20673 df-mhp 20876 |
This theorem is referenced by: mhpsubg 20896 mhpind 39788 |
Copyright terms: Public domain | W3C validator |