| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmfg | Structured version Visualization version GIF version | ||
| Description: The image filter of a filter base is the same as the image filter of its generated filter. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfm2.l | ⊢ 𝐿 = (𝑌filGen𝐵) |
| Ref | Expression |
|---|---|
| fmfg | ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑋 FilMap 𝐹)‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfm2.l | . . . 4 ⊢ 𝐿 = (𝑌filGen𝐵) | |
| 2 | 1 | elfm2 23871 | . . 3 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥))) |
| 3 | fgcl 23801 | . . . . . 6 ⊢ (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌)) | |
| 4 | 1, 3 | eqeltrid 2837 | . . . . 5 ⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌)) |
| 5 | filfbas 23771 | . . . . 5 ⊢ (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (fBas‘𝑌)) |
| 7 | elfm 23870 | . . . 4 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥))) | |
| 8 | 6, 7 | syl3an2 1164 | . . 3 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥))) |
| 9 | 2, 8 | bitr4d 282 | . 2 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿))) |
| 10 | 9 | eqrdv 2732 | 1 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑋 FilMap 𝐹)‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3924 “ cima 5654 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 fBascfbas 21288 filGencfg 21289 Filcfil 23768 FilMap cfm 23856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-fbas 21297 df-fg 21298 df-fil 23769 df-fm 23861 |
| This theorem is referenced by: fmfnfm 23881 cmetcaulem 25225 |
| Copyright terms: Public domain | W3C validator |