| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmfg | Structured version Visualization version GIF version | ||
| Description: The image filter of a filter base is the same as the image filter of its generated filter. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| elfm2.l | ⊢ 𝐿 = (𝑌filGen𝐵) |
| Ref | Expression |
|---|---|
| fmfg | ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑋 FilMap 𝐹)‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfm2.l | . . . 4 ⊢ 𝐿 = (𝑌filGen𝐵) | |
| 2 | 1 | elfm2 23863 | . . 3 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥))) |
| 3 | fgcl 23793 | . . . . . 6 ⊢ (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌)) | |
| 4 | 1, 3 | eqeltrid 2835 | . . . . 5 ⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌)) |
| 5 | filfbas 23763 | . . . . 5 ⊢ (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (fBas‘𝑌)) |
| 7 | elfm 23862 | . . . 4 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥))) | |
| 8 | 6, 7 | syl3an2 1164 | . . 3 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥))) |
| 9 | 2, 8 | bitr4d 282 | . 2 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿))) |
| 10 | 9 | eqrdv 2729 | 1 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑋 FilMap 𝐹)‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 fBascfbas 21279 filGencfg 21280 Filcfil 23760 FilMap cfm 23848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-fbas 21288 df-fg 21289 df-fil 23761 df-fm 23853 |
| This theorem is referenced by: fmfnfm 23873 cmetcaulem 25215 |
| Copyright terms: Public domain | W3C validator |