![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmfg | Structured version Visualization version GIF version |
Description: The image filter of a filter base is the same as the image filter of its generated filter. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
elfm2.l | ⊢ 𝐿 = (𝑌filGen𝐵) |
Ref | Expression |
---|---|
fmfg | ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑋 FilMap 𝐹)‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfm2.l | . . . 4 ⊢ 𝐿 = (𝑌filGen𝐵) | |
2 | 1 | elfm2 22275 | . . 3 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥))) |
3 | fgcl 22205 | . . . . . 6 ⊢ (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌)) | |
4 | 1, 3 | syl5eqel 2872 | . . . . 5 ⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌)) |
5 | filfbas 22175 | . . . . 5 ⊢ (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌)) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (fBas‘𝑌)) |
7 | elfm 22274 | . . . 4 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥))) | |
8 | 6, 7 | syl3an2 1145 | . . 3 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥))) |
9 | 2, 8 | bitr4d 274 | . 2 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿))) |
10 | 9 | eqrdv 2778 | 1 ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑋 FilMap 𝐹)‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ∃wrex 3091 ⊆ wss 3831 “ cima 5414 ⟶wf 6189 ‘cfv 6193 (class class class)co 6982 fBascfbas 20250 filGencfg 20251 Filcfil 22172 FilMap cfm 22260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-op 4451 df-uni 4718 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-id 5316 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-ov 6985 df-oprab 6986 df-mpo 6987 df-fbas 20259 df-fg 20260 df-fil 22173 df-fm 22265 |
This theorem is referenced by: fmfnfm 22285 cmetcaulem 23609 |
Copyright terms: Public domain | W3C validator |