MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfg Structured version   Visualization version   GIF version

Theorem fmfg 23008
Description: The image filter of a filter base is the same as the image filter of its generated filter. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
elfm2.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
fmfg ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑋 FilMap 𝐹)‘𝐿))

Proof of Theorem fmfg
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfm2.l . . . 4 𝐿 = (𝑌filGen𝐵)
21elfm2 23007 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
3 fgcl 22937 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
41, 3eqeltrid 2843 . . . . 5 (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
5 filfbas 22907 . . . . 5 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
64, 5syl 17 . . . 4 (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
7 elfm 23006 . . . 4 ((𝑋𝐶𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
86, 7syl3an2 1162 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
92, 8bitr4d 281 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)))
109eqrdv 2736 1 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑋 FilMap 𝐹)‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  wss 3883  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  fBascfbas 20498  filGencfg 20499  Filcfil 22904   FilMap cfm 22992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-fg 20508  df-fil 22905  df-fm 22997
This theorem is referenced by:  fmfnfm  23017  cmetcaulem  24357
  Copyright terms: Public domain W3C validator