MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfg Structured version   Visualization version   GIF version

Theorem fmfg 23834
Description: The image filter of a filter base is the same as the image filter of its generated filter. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
elfm2.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
fmfg ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑋 FilMap 𝐹)‘𝐿))

Proof of Theorem fmfg
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfm2.l . . . 4 𝐿 = (𝑌filGen𝐵)
21elfm2 23833 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
3 fgcl 23763 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
41, 3eqeltrid 2832 . . . . 5 (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
5 filfbas 23733 . . . . 5 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
64, 5syl 17 . . . 4 (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
7 elfm 23832 . . . 4 ((𝑋𝐶𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
86, 7syl3an2 1164 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
92, 8bitr4d 282 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)))
109eqrdv 2727 1 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑋 FilMap 𝐹)‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3903  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  fBascfbas 21249  filGencfg 21250  Filcfil 23730   FilMap cfm 23818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-fbas 21258  df-fg 21259  df-fil 23731  df-fm 23823
This theorem is referenced by:  fmfnfm  23843  cmetcaulem  25186
  Copyright terms: Public domain W3C validator