MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm2 Structured version   Visualization version   GIF version

Theorem elfm2 23842
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 26-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
elfm2.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
elfm2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑋   𝑥,𝐴   𝑥,𝐿   𝑥,𝑌

Proof of Theorem elfm2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elfm 23841 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2 ssfg 23766 . . . . . . . . . 10 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
3 elfm2.l . . . . . . . . . 10 𝐿 = (𝑌filGen𝐵)
42, 3sseqtrrdi 3991 . . . . . . . . 9 (𝐵 ∈ (fBas‘𝑌) → 𝐵𝐿)
54sselda 3949 . . . . . . . 8 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑦𝐵) → 𝑦𝐿)
65adantrr 717 . . . . . . 7 ((𝐵 ∈ (fBas‘𝑌) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦𝐿)
763ad2antl2 1187 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦𝐿)
8 simprr 772 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → (𝐹𝑦) ⊆ 𝐴)
9 imaeq2 6030 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
109sseq1d 3981 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ⊆ 𝐴 ↔ (𝐹𝑦) ⊆ 𝐴))
1110rspcev 3591 . . . . . 6 ((𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴) → ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)
127, 8, 11syl2anc 584 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)
1312rexlimdvaa 3136 . . . 4 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴 → ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴))
143eleq2i 2821 . . . . . . . 8 (𝑥𝐿𝑥 ∈ (𝑌filGen𝐵))
15 elfg 23765 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑌) → (𝑥 ∈ (𝑌filGen𝐵) ↔ (𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥)))
1614, 15bitrid 283 . . . . . . 7 (𝐵 ∈ (fBas‘𝑌) → (𝑥𝐿 ↔ (𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥)))
17163ad2ant2 1134 . . . . . 6 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥𝐿 ↔ (𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥)))
18 imass2 6076 . . . . . . . . . . 11 (𝑦𝑥 → (𝐹𝑦) ⊆ (𝐹𝑥))
19 sstr2 3956 . . . . . . . . . . . . 13 ((𝐹𝑦) ⊆ (𝐹𝑥) → ((𝐹𝑥) ⊆ 𝐴 → (𝐹𝑦) ⊆ 𝐴))
2019com12 32 . . . . . . . . . . . 12 ((𝐹𝑥) ⊆ 𝐴 → ((𝐹𝑦) ⊆ (𝐹𝑥) → (𝐹𝑦) ⊆ 𝐴))
2120ad2antll 729 . . . . . . . . . . 11 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ⊆ 𝐴)) → ((𝐹𝑦) ⊆ (𝐹𝑥) → (𝐹𝑦) ⊆ 𝐴))
2218, 21syl5 34 . . . . . . . . . 10 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ⊆ 𝐴)) → (𝑦𝑥 → (𝐹𝑦) ⊆ 𝐴))
2322reximdv 3149 . . . . . . . . 9 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ⊆ 𝐴)) → (∃𝑦𝐵 𝑦𝑥 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴))
2423expr 456 . . . . . . . 8 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝑌) → ((𝐹𝑥) ⊆ 𝐴 → (∃𝑦𝐵 𝑦𝑥 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2524com23 86 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝑌) → (∃𝑦𝐵 𝑦𝑥 → ((𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2625expimpd 453 . . . . . 6 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥) → ((𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2717, 26sylbid 240 . . . . 5 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥𝐿 → ((𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2827rexlimdv 3133 . . . 4 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴))
2913, 28impbid 212 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴 ↔ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴))
3029anbi2d 630 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴) ↔ (𝐴𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)))
311, 30bitrd 279 1 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  wss 3917  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  fBascfbas 21259  filGencfg 21260   FilMap cfm 23827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-fbas 21268  df-fg 21269  df-fm 23832
This theorem is referenced by:  fmfg  23843  elfm3  23844  imaelfm  23845
  Copyright terms: Public domain W3C validator