MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm2 Structured version   Visualization version   GIF version

Theorem elfm2 23007
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 26-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
elfm2.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
elfm2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑋   𝑥,𝐴   𝑥,𝐿   𝑥,𝑌

Proof of Theorem elfm2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elfm 23006 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2 ssfg 22931 . . . . . . . . . 10 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
3 elfm2.l . . . . . . . . . 10 𝐿 = (𝑌filGen𝐵)
42, 3sseqtrrdi 3968 . . . . . . . . 9 (𝐵 ∈ (fBas‘𝑌) → 𝐵𝐿)
54sselda 3917 . . . . . . . 8 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑦𝐵) → 𝑦𝐿)
65adantrr 713 . . . . . . 7 ((𝐵 ∈ (fBas‘𝑌) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦𝐿)
763ad2antl2 1184 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦𝐿)
8 simprr 769 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → (𝐹𝑦) ⊆ 𝐴)
9 imaeq2 5954 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
109sseq1d 3948 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ⊆ 𝐴 ↔ (𝐹𝑦) ⊆ 𝐴))
1110rspcev 3552 . . . . . 6 ((𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴) → ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)
127, 8, 11syl2anc 583 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)
1312rexlimdvaa 3213 . . . 4 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴 → ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴))
143eleq2i 2830 . . . . . . . 8 (𝑥𝐿𝑥 ∈ (𝑌filGen𝐵))
15 elfg 22930 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑌) → (𝑥 ∈ (𝑌filGen𝐵) ↔ (𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥)))
1614, 15syl5bb 282 . . . . . . 7 (𝐵 ∈ (fBas‘𝑌) → (𝑥𝐿 ↔ (𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥)))
17163ad2ant2 1132 . . . . . 6 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥𝐿 ↔ (𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥)))
18 imass2 5999 . . . . . . . . . . 11 (𝑦𝑥 → (𝐹𝑦) ⊆ (𝐹𝑥))
19 sstr2 3924 . . . . . . . . . . . . 13 ((𝐹𝑦) ⊆ (𝐹𝑥) → ((𝐹𝑥) ⊆ 𝐴 → (𝐹𝑦) ⊆ 𝐴))
2019com12 32 . . . . . . . . . . . 12 ((𝐹𝑥) ⊆ 𝐴 → ((𝐹𝑦) ⊆ (𝐹𝑥) → (𝐹𝑦) ⊆ 𝐴))
2120ad2antll 725 . . . . . . . . . . 11 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ⊆ 𝐴)) → ((𝐹𝑦) ⊆ (𝐹𝑥) → (𝐹𝑦) ⊆ 𝐴))
2218, 21syl5 34 . . . . . . . . . 10 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ⊆ 𝐴)) → (𝑦𝑥 → (𝐹𝑦) ⊆ 𝐴))
2322reximdv 3201 . . . . . . . . 9 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ⊆ 𝐴)) → (∃𝑦𝐵 𝑦𝑥 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴))
2423expr 456 . . . . . . . 8 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝑌) → ((𝐹𝑥) ⊆ 𝐴 → (∃𝑦𝐵 𝑦𝑥 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2524com23 86 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝑌) → (∃𝑦𝐵 𝑦𝑥 → ((𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2625expimpd 453 . . . . . 6 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥) → ((𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2717, 26sylbid 239 . . . . 5 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥𝐿 → ((𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2827rexlimdv 3211 . . . 4 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴))
2913, 28impbid 211 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴 ↔ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴))
3029anbi2d 628 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴) ↔ (𝐴𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)))
311, 30bitrd 278 1 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  wss 3883  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  fBascfbas 20498  filGencfg 20499   FilMap cfm 22992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-fg 20508  df-fm 22997
This theorem is referenced by:  fmfg  23008  elfm3  23009  imaelfm  23010
  Copyright terms: Public domain W3C validator