|   | Mathbox for Mario Carneiro | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for erdsze 35207. (Contributed by Mario Carneiro, 22-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| erdsze.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| erdsze.f | ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) | 
| erdszelem.k | ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) | 
| erdszelem.o | ⊢ 𝑂 Or ℝ | 
| Ref | Expression | 
|---|---|
| erdszelem6 | ⊢ (𝜑 → 𝐾:(1...𝑁)⟶ℕ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltso 11341 | . . . 4 ⊢ < Or ℝ | |
| 2 | 1 | supex 9503 | . . 3 ⊢ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < ) ∈ V | 
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < ) ∈ V) | 
| 4 | erdszelem.k | . . 3 ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < ))) | 
| 6 | eqid 2737 | . . . . 5 ⊢ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)} | |
| 7 | 6 | erdszelem2 35197 | . . . 4 ⊢ ((♯ “ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)}) ⊆ ℕ) | 
| 8 | 7 | simpri 485 | . . 3 ⊢ (♯ “ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)}) ⊆ ℕ | 
| 9 | erdsze.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 10 | erdsze.f | . . . 4 ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) | |
| 11 | erdszelem.o | . . . 4 ⊢ 𝑂 Or ℝ | |
| 12 | 9, 10, 4, 11 | erdszelem5 35200 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (1...𝑁)) → (𝐾‘𝑧) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)})) | 
| 13 | 8, 12 | sselid 3981 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (1...𝑁)) → (𝐾‘𝑧) ∈ ℕ) | 
| 14 | 3, 5, 13 | fmpt2d 7144 | 1 ⊢ (𝜑 → 𝐾:(1...𝑁)⟶ℕ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 Vcvv 3480 ⊆ wss 3951 𝒫 cpw 4600 ↦ cmpt 5225 Or wor 5591 ↾ cres 5687 “ cima 5688 ⟶wf 6557 –1-1→wf1 6558 ‘cfv 6561 Isom wiso 6562 (class class class)co 7431 Fincfn 8985 supcsup 9480 ℝcr 11154 1c1 11156 < clt 11295 ℕcn 12266 ...cfz 13547 ♯chash 14369 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 | 
| This theorem is referenced by: erdszelem7 35202 erdszelem8 35203 erdszelem9 35204 | 
| Copyright terms: Public domain | W3C validator |