![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem6 | Structured version Visualization version GIF version |
Description: Lemma for erdsze 35040. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
erdsze.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
erdsze.f | ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
erdszelem.k | ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
erdszelem.o | ⊢ 𝑂 Or ℝ |
Ref | Expression |
---|---|
erdszelem6 | ⊢ (𝜑 → 𝐾:(1...𝑁)⟶ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 11332 | . . . 4 ⊢ < Or ℝ | |
2 | 1 | supex 9496 | . . 3 ⊢ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < ) ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < ) ∈ V) |
4 | erdszelem.k | . . 3 ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) | |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < ))) |
6 | eqid 2726 | . . . . 5 ⊢ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)} | |
7 | 6 | erdszelem2 35030 | . . . 4 ⊢ ((♯ “ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)}) ⊆ ℕ) |
8 | 7 | simpri 484 | . . 3 ⊢ (♯ “ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)}) ⊆ ℕ |
9 | erdsze.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
10 | erdsze.f | . . . 4 ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) | |
11 | erdszelem.o | . . . 4 ⊢ 𝑂 Or ℝ | |
12 | 9, 10, 4, 11 | erdszelem5 35033 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (1...𝑁)) → (𝐾‘𝑧) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)})) |
13 | 8, 12 | sselid 3976 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (1...𝑁)) → (𝐾‘𝑧) ∈ ℕ) |
14 | 3, 5, 13 | fmpt2d 7127 | 1 ⊢ (𝜑 → 𝐾:(1...𝑁)⟶ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 Vcvv 3462 ⊆ wss 3946 𝒫 cpw 4597 ↦ cmpt 5226 Or wor 5583 ↾ cres 5674 “ cima 5675 ⟶wf 6539 –1-1→wf1 6540 ‘cfv 6543 Isom wiso 6544 (class class class)co 7413 Fincfn 8963 supcsup 9473 ℝcr 11145 1c1 11147 < clt 11286 ℕcn 12255 ...cfz 13529 ♯chash 14339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9475 df-card 9972 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-n0 12516 df-xnn0 12588 df-z 12602 df-uz 12866 df-fz 13530 df-hash 14340 |
This theorem is referenced by: erdszelem7 35035 erdszelem8 35036 erdszelem9 35037 |
Copyright terms: Public domain | W3C validator |