| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for erdsze 35224. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| Ref | Expression |
|---|---|
| erdsze.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| erdsze.f | ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
| erdszelem.k | ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
| erdszelem.o | ⊢ 𝑂 Or ℝ |
| Ref | Expression |
|---|---|
| erdszelem6 | ⊢ (𝜑 → 𝐾:(1...𝑁)⟶ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso 11315 | . . . 4 ⊢ < Or ℝ | |
| 2 | 1 | supex 9476 | . . 3 ⊢ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < ) ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < ) ∈ V) |
| 4 | erdszelem.k | . . 3 ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < ))) |
| 6 | eqid 2735 | . . . . 5 ⊢ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)} | |
| 7 | 6 | erdszelem2 35214 | . . . 4 ⊢ ((♯ “ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)}) ⊆ ℕ) |
| 8 | 7 | simpri 485 | . . 3 ⊢ (♯ “ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)}) ⊆ ℕ |
| 9 | erdsze.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 10 | erdsze.f | . . . 4 ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) | |
| 11 | erdszelem.o | . . . 4 ⊢ 𝑂 Or ℝ | |
| 12 | 9, 10, 4, 11 | erdszelem5 35217 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (1...𝑁)) → (𝐾‘𝑧) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝑧) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑧 ∈ 𝑦)})) |
| 13 | 8, 12 | sselid 3956 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ (1...𝑁)) → (𝐾‘𝑧) ∈ ℕ) |
| 14 | 3, 5, 13 | fmpt2d 7114 | 1 ⊢ (𝜑 → 𝐾:(1...𝑁)⟶ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 ↦ cmpt 5201 Or wor 5560 ↾ cres 5656 “ cima 5657 ⟶wf 6527 –1-1→wf1 6528 ‘cfv 6531 Isom wiso 6532 (class class class)co 7405 Fincfn 8959 supcsup 9452 ℝcr 11128 1c1 11130 < clt 11269 ℕcn 12240 ...cfz 13524 ♯chash 14348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 |
| This theorem is referenced by: erdszelem7 35219 erdszelem8 35220 erdszelem9 35221 |
| Copyright terms: Public domain | W3C validator |