Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inclfusubc | Structured version Visualization version GIF version |
Description: The "inclusion functor" from a subcategory of a category into the category itself. (Contributed by AV, 30-Mar-2020.) |
Ref | Expression |
---|---|
inclfusubc.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
inclfusubc.s | ⊢ 𝑆 = (𝐶 ↾cat 𝐽) |
inclfusubc.b | ⊢ 𝐵 = (Base‘𝑆) |
inclfusubc.f | ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) |
inclfusubc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) |
Ref | Expression |
---|---|
inclfusubc | ⊢ (𝜑 → 𝐹(𝑆 Func 𝐶)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fthfunc 17697 | . . 3 ⊢ (𝑆 Faith 𝐶) ⊆ (𝑆 Func 𝐶) | |
2 | inclfusubc.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
3 | inclfusubc.s | . . . . 5 ⊢ 𝑆 = (𝐶 ↾cat 𝐽) | |
4 | eqid 2736 | . . . . 5 ⊢ (idfunc‘𝑆) = (idfunc‘𝑆) | |
5 | 3, 4 | rescfth 17727 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (idfunc‘𝑆) ∈ (𝑆 Faith 𝐶)) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → (idfunc‘𝑆) ∈ (𝑆 Faith 𝐶)) |
7 | 1, 6 | sselid 3928 | . 2 ⊢ (𝜑 → (idfunc‘𝑆) ∈ (𝑆 Func 𝐶)) |
8 | df-br 5087 | . . 3 ⊢ (𝐹(𝑆 Func 𝐶)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑆 Func 𝐶)) | |
9 | inclfusubc.f | . . . . . 6 ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) | |
10 | inclfusubc.g | . . . . . 6 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) | |
11 | 9, 10 | opeq12d 4822 | . . . . 5 ⊢ (𝜑 → 〈𝐹, 𝐺〉 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
12 | inclfusubc.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
13 | 3, 4, 12 | idfusubc 45694 | . . . . . 6 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (idfunc‘𝑆) = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
14 | 2, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (idfunc‘𝑆) = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
15 | 11, 14 | eqtr4d 2779 | . . . 4 ⊢ (𝜑 → 〈𝐹, 𝐺〉 = (idfunc‘𝑆)) |
16 | 15 | eleq1d 2821 | . . 3 ⊢ (𝜑 → (〈𝐹, 𝐺〉 ∈ (𝑆 Func 𝐶) ↔ (idfunc‘𝑆) ∈ (𝑆 Func 𝐶))) |
17 | 8, 16 | bitrid 282 | . 2 ⊢ (𝜑 → (𝐹(𝑆 Func 𝐶)𝐺 ↔ (idfunc‘𝑆) ∈ (𝑆 Func 𝐶))) |
18 | 7, 17 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹(𝑆 Func 𝐶)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 〈cop 4576 class class class wbr 5086 I cid 5505 ↾ cres 5609 ‘cfv 6465 (class class class)co 7316 ∈ cmpo 7318 Basecbs 16986 ↾cat cresc 17594 Subcatcsubc 17595 Func cfunc 17643 idfunccidfu 17644 Faith cfth 17693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-map 8666 df-pm 8667 df-ixp 8735 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-hom 17060 df-cco 17061 df-cat 17451 df-cid 17452 df-homf 17453 df-ssc 17596 df-resc 17597 df-subc 17598 df-func 17647 df-idfu 17648 df-full 17694 df-fth 17695 |
This theorem is referenced by: rngcifuestrc 45825 |
Copyright terms: Public domain | W3C validator |