| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inclfusubc | Structured version Visualization version GIF version | ||
| Description: The "inclusion functor" from a subcategory of a category into the category itself. (Contributed by AV, 30-Mar-2020.) |
| Ref | Expression |
|---|---|
| inclfusubc.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| inclfusubc.s | ⊢ 𝑆 = (𝐶 ↾cat 𝐽) |
| inclfusubc.b | ⊢ 𝐵 = (Base‘𝑆) |
| inclfusubc.f | ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) |
| inclfusubc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) |
| Ref | Expression |
|---|---|
| inclfusubc | ⊢ (𝜑 → 𝐹(𝑆 Func 𝐶)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthfunc 17878 | . . 3 ⊢ (𝑆 Faith 𝐶) ⊆ (𝑆 Func 𝐶) | |
| 2 | inclfusubc.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
| 3 | inclfusubc.s | . . . . 5 ⊢ 𝑆 = (𝐶 ↾cat 𝐽) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (idfunc‘𝑆) = (idfunc‘𝑆) | |
| 5 | 3, 4 | rescfth 17908 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (idfunc‘𝑆) ∈ (𝑆 Faith 𝐶)) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → (idfunc‘𝑆) ∈ (𝑆 Faith 𝐶)) |
| 7 | 1, 6 | sselid 3947 | . 2 ⊢ (𝜑 → (idfunc‘𝑆) ∈ (𝑆 Func 𝐶)) |
| 8 | df-br 5111 | . . 3 ⊢ (𝐹(𝑆 Func 𝐶)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑆 Func 𝐶)) | |
| 9 | inclfusubc.f | . . . . . 6 ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) | |
| 10 | inclfusubc.g | . . . . . 6 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) | |
| 11 | 9, 10 | opeq12d 4848 | . . . . 5 ⊢ (𝜑 → 〈𝐹, 𝐺〉 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
| 12 | inclfusubc.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
| 13 | 3, 4, 12 | idfusubc 17869 | . . . . . 6 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (idfunc‘𝑆) = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
| 14 | 2, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (idfunc‘𝑆) = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
| 15 | 11, 14 | eqtr4d 2768 | . . . 4 ⊢ (𝜑 → 〈𝐹, 𝐺〉 = (idfunc‘𝑆)) |
| 16 | 15 | eleq1d 2814 | . . 3 ⊢ (𝜑 → (〈𝐹, 𝐺〉 ∈ (𝑆 Func 𝐶) ↔ (idfunc‘𝑆) ∈ (𝑆 Func 𝐶))) |
| 17 | 8, 16 | bitrid 283 | . 2 ⊢ (𝜑 → (𝐹(𝑆 Func 𝐶)𝐺 ↔ (idfunc‘𝑆) ∈ (𝑆 Func 𝐶))) |
| 18 | 7, 17 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹(𝑆 Func 𝐶)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 I cid 5535 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 Basecbs 17186 ↾cat cresc 17777 Subcatcsubc 17778 Func cfunc 17823 idfunccidfu 17824 Faith cfth 17874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-hom 17251 df-cco 17252 df-cat 17636 df-cid 17637 df-homf 17638 df-ssc 17779 df-resc 17780 df-subc 17781 df-func 17827 df-idfu 17828 df-full 17875 df-fth 17876 |
| This theorem is referenced by: rngcifuestrc 20555 |
| Copyright terms: Public domain | W3C validator |