Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inclfusubc | Structured version Visualization version GIF version |
Description: The "inclusion functor" from a subcategory of a category into the category itself. (Contributed by AV, 30-Mar-2020.) |
Ref | Expression |
---|---|
inclfusubc.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
inclfusubc.s | ⊢ 𝑆 = (𝐶 ↾cat 𝐽) |
inclfusubc.b | ⊢ 𝐵 = (Base‘𝑆) |
inclfusubc.f | ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) |
inclfusubc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) |
Ref | Expression |
---|---|
inclfusubc | ⊢ (𝜑 → 𝐹(𝑆 Func 𝐶)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fthfunc 17539 | . . 3 ⊢ (𝑆 Faith 𝐶) ⊆ (𝑆 Func 𝐶) | |
2 | inclfusubc.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
3 | inclfusubc.s | . . . . 5 ⊢ 𝑆 = (𝐶 ↾cat 𝐽) | |
4 | eqid 2738 | . . . . 5 ⊢ (idfunc‘𝑆) = (idfunc‘𝑆) | |
5 | 3, 4 | rescfth 17569 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (idfunc‘𝑆) ∈ (𝑆 Faith 𝐶)) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → (idfunc‘𝑆) ∈ (𝑆 Faith 𝐶)) |
7 | 1, 6 | sselid 3915 | . 2 ⊢ (𝜑 → (idfunc‘𝑆) ∈ (𝑆 Func 𝐶)) |
8 | df-br 5071 | . . 3 ⊢ (𝐹(𝑆 Func 𝐶)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑆 Func 𝐶)) | |
9 | inclfusubc.f | . . . . . 6 ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) | |
10 | inclfusubc.g | . . . . . 6 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) | |
11 | 9, 10 | opeq12d 4809 | . . . . 5 ⊢ (𝜑 → 〈𝐹, 𝐺〉 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
12 | inclfusubc.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
13 | 3, 4, 12 | idfusubc 45312 | . . . . . 6 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (idfunc‘𝑆) = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
14 | 2, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (idfunc‘𝑆) = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
15 | 11, 14 | eqtr4d 2781 | . . . 4 ⊢ (𝜑 → 〈𝐹, 𝐺〉 = (idfunc‘𝑆)) |
16 | 15 | eleq1d 2823 | . . 3 ⊢ (𝜑 → (〈𝐹, 𝐺〉 ∈ (𝑆 Func 𝐶) ↔ (idfunc‘𝑆) ∈ (𝑆 Func 𝐶))) |
17 | 8, 16 | syl5bb 282 | . 2 ⊢ (𝜑 → (𝐹(𝑆 Func 𝐶)𝐺 ↔ (idfunc‘𝑆) ∈ (𝑆 Func 𝐶))) |
18 | 7, 17 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹(𝑆 Func 𝐶)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 I cid 5479 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 ↾cat cresc 17437 Subcatcsubc 17438 Func cfunc 17485 idfunccidfu 17486 Faith cfth 17535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-hom 16912 df-cco 16913 df-cat 17294 df-cid 17295 df-homf 17296 df-ssc 17439 df-resc 17440 df-subc 17441 df-func 17489 df-idfu 17490 df-full 17536 df-fth 17537 |
This theorem is referenced by: rngcifuestrc 45443 |
Copyright terms: Public domain | W3C validator |