![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inclfusubc | Structured version Visualization version GIF version |
Description: The "inclusion functor" from a subcategory of a category into the category itself. (Contributed by AV, 30-Mar-2020.) |
Ref | Expression |
---|---|
inclfusubc.j | β’ (π β π½ β (SubcatβπΆ)) |
inclfusubc.s | β’ π = (πΆ βΎcat π½) |
inclfusubc.b | β’ π΅ = (Baseβπ) |
inclfusubc.f | β’ (π β πΉ = ( I βΎ π΅)) |
inclfusubc.g | β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯π½π¦)))) |
Ref | Expression |
---|---|
inclfusubc | β’ (π β πΉ(π Func πΆ)πΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fthfunc 17854 | . . 3 β’ (π Faith πΆ) β (π Func πΆ) | |
2 | inclfusubc.j | . . . 4 β’ (π β π½ β (SubcatβπΆ)) | |
3 | inclfusubc.s | . . . . 5 β’ π = (πΆ βΎcat π½) | |
4 | eqid 2732 | . . . . 5 β’ (idfuncβπ) = (idfuncβπ) | |
5 | 3, 4 | rescfth 17884 | . . . 4 β’ (π½ β (SubcatβπΆ) β (idfuncβπ) β (π Faith πΆ)) |
6 | 2, 5 | syl 17 | . . 3 β’ (π β (idfuncβπ) β (π Faith πΆ)) |
7 | 1, 6 | sselid 3979 | . 2 β’ (π β (idfuncβπ) β (π Func πΆ)) |
8 | df-br 5148 | . . 3 β’ (πΉ(π Func πΆ)πΊ β β¨πΉ, πΊβ© β (π Func πΆ)) | |
9 | inclfusubc.f | . . . . . 6 β’ (π β πΉ = ( I βΎ π΅)) | |
10 | inclfusubc.g | . . . . . 6 β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯π½π¦)))) | |
11 | 9, 10 | opeq12d 4880 | . . . . 5 β’ (π β β¨πΉ, πΊβ© = β¨( I βΎ π΅), (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯π½π¦)))β©) |
12 | inclfusubc.b | . . . . . . 7 β’ π΅ = (Baseβπ) | |
13 | 3, 4, 12 | idfusubc 46626 | . . . . . 6 β’ (π½ β (SubcatβπΆ) β (idfuncβπ) = β¨( I βΎ π΅), (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯π½π¦)))β©) |
14 | 2, 13 | syl 17 | . . . . 5 β’ (π β (idfuncβπ) = β¨( I βΎ π΅), (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯π½π¦)))β©) |
15 | 11, 14 | eqtr4d 2775 | . . . 4 β’ (π β β¨πΉ, πΊβ© = (idfuncβπ)) |
16 | 15 | eleq1d 2818 | . . 3 β’ (π β (β¨πΉ, πΊβ© β (π Func πΆ) β (idfuncβπ) β (π Func πΆ))) |
17 | 8, 16 | bitrid 282 | . 2 β’ (π β (πΉ(π Func πΆ)πΊ β (idfuncβπ) β (π Func πΆ))) |
18 | 7, 17 | mpbird 256 | 1 β’ (π β πΉ(π Func πΆ)πΊ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β¨cop 4633 class class class wbr 5147 I cid 5572 βΎ cres 5677 βcfv 6540 (class class class)co 7405 β cmpo 7407 Basecbs 17140 βΎcat cresc 17751 Subcatcsubc 17752 Func cfunc 17800 idfunccidfu 17801 Faith cfth 17850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-hom 17217 df-cco 17218 df-cat 17608 df-cid 17609 df-homf 17610 df-ssc 17753 df-resc 17754 df-subc 17755 df-func 17804 df-idfu 17805 df-full 17851 df-fth 17852 |
This theorem is referenced by: rngcifuestrc 46848 |
Copyright terms: Public domain | W3C validator |