![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inclfusubc | Structured version Visualization version GIF version |
Description: The "inclusion functor" from a subcategory of a category into the category itself. (Contributed by AV, 30-Mar-2020.) |
Ref | Expression |
---|---|
inclfusubc.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
inclfusubc.s | ⊢ 𝑆 = (𝐶 ↾cat 𝐽) |
inclfusubc.b | ⊢ 𝐵 = (Base‘𝑆) |
inclfusubc.f | ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) |
inclfusubc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) |
Ref | Expression |
---|---|
inclfusubc | ⊢ (𝜑 → 𝐹(𝑆 Func 𝐶)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fthfunc 17961 | . . 3 ⊢ (𝑆 Faith 𝐶) ⊆ (𝑆 Func 𝐶) | |
2 | inclfusubc.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
3 | inclfusubc.s | . . . . 5 ⊢ 𝑆 = (𝐶 ↾cat 𝐽) | |
4 | eqid 2735 | . . . . 5 ⊢ (idfunc‘𝑆) = (idfunc‘𝑆) | |
5 | 3, 4 | rescfth 17991 | . . . 4 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (idfunc‘𝑆) ∈ (𝑆 Faith 𝐶)) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → (idfunc‘𝑆) ∈ (𝑆 Faith 𝐶)) |
7 | 1, 6 | sselid 3993 | . 2 ⊢ (𝜑 → (idfunc‘𝑆) ∈ (𝑆 Func 𝐶)) |
8 | df-br 5149 | . . 3 ⊢ (𝐹(𝑆 Func 𝐶)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑆 Func 𝐶)) | |
9 | inclfusubc.f | . . . . . 6 ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) | |
10 | inclfusubc.g | . . . . . 6 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) | |
11 | 9, 10 | opeq12d 4886 | . . . . 5 ⊢ (𝜑 → 〈𝐹, 𝐺〉 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
12 | inclfusubc.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
13 | 3, 4, 12 | idfusubc 17951 | . . . . . 6 ⊢ (𝐽 ∈ (Subcat‘𝐶) → (idfunc‘𝑆) = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
14 | 2, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → (idfunc‘𝑆) = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) |
15 | 11, 14 | eqtr4d 2778 | . . . 4 ⊢ (𝜑 → 〈𝐹, 𝐺〉 = (idfunc‘𝑆)) |
16 | 15 | eleq1d 2824 | . . 3 ⊢ (𝜑 → (〈𝐹, 𝐺〉 ∈ (𝑆 Func 𝐶) ↔ (idfunc‘𝑆) ∈ (𝑆 Func 𝐶))) |
17 | 8, 16 | bitrid 283 | . 2 ⊢ (𝜑 → (𝐹(𝑆 Func 𝐶)𝐺 ↔ (idfunc‘𝑆) ∈ (𝑆 Func 𝐶))) |
18 | 7, 17 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹(𝑆 Func 𝐶)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 〈cop 4637 class class class wbr 5148 I cid 5582 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 Basecbs 17245 ↾cat cresc 17856 Subcatcsubc 17857 Func cfunc 17905 idfunccidfu 17906 Faith cfth 17957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-hom 17322 df-cco 17323 df-cat 17713 df-cid 17714 df-homf 17715 df-ssc 17858 df-resc 17859 df-subc 17860 df-func 17909 df-idfu 17910 df-full 17958 df-fth 17959 |
This theorem is referenced by: rngcifuestrc 20656 |
Copyright terms: Public domain | W3C validator |