MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcinv Structured version   Visualization version   GIF version

Theorem funcinv 17841
Description: The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
funcinv.b 𝐵 = (Base‘𝐷)
funcinv.s 𝐼 = (Inv‘𝐷)
funcinv.t 𝐽 = (Inv‘𝐸)
funcinv.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
funcinv.x (𝜑𝑋𝐵)
funcinv.y (𝜑𝑌𝐵)
funcinv.m (𝜑𝑀(𝑋𝐼𝑌)𝑁)
Assertion
Ref Expression
funcinv (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁))

Proof of Theorem funcinv
StepHypRef Expression
1 funcinv.b . . 3 𝐵 = (Base‘𝐷)
2 eqid 2730 . . 3 (Sect‘𝐷) = (Sect‘𝐷)
3 eqid 2730 . . 3 (Sect‘𝐸) = (Sect‘𝐸)
4 funcinv.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
5 funcinv.x . . 3 (𝜑𝑋𝐵)
6 funcinv.y . . 3 (𝜑𝑌𝐵)
7 funcinv.m . . . . 5 (𝜑𝑀(𝑋𝐼𝑌)𝑁)
8 funcinv.s . . . . . 6 𝐼 = (Inv‘𝐷)
9 df-br 5110 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
104, 9sylib 218 . . . . . . . 8 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
11 funcrcl 17831 . . . . . . . 8 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1210, 11syl 17 . . . . . . 7 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1312simpld 494 . . . . . 6 (𝜑𝐷 ∈ Cat)
141, 8, 13, 5, 6, 2isinv 17728 . . . . 5 (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁𝑁(𝑌(Sect‘𝐷)𝑋)𝑀)))
157, 14mpbid 232 . . . 4 (𝜑 → (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁𝑁(𝑌(Sect‘𝐷)𝑋)𝑀))
1615simpld 494 . . 3 (𝜑𝑀(𝑋(Sect‘𝐷)𝑌)𝑁)
171, 2, 3, 4, 5, 6, 16funcsect 17840 . 2 (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐸)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁))
1815simprd 495 . . 3 (𝜑𝑁(𝑌(Sect‘𝐷)𝑋)𝑀)
191, 2, 3, 4, 6, 5, 18funcsect 17840 . 2 (𝜑 → ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐸)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀))
20 eqid 2730 . . 3 (Base‘𝐸) = (Base‘𝐸)
21 funcinv.t . . 3 𝐽 = (Inv‘𝐸)
2212simprd 495 . . 3 (𝜑𝐸 ∈ Cat)
231, 20, 4funcf1 17834 . . . 4 (𝜑𝐹:𝐵⟶(Base‘𝐸))
2423, 5ffvelcdmd 7059 . . 3 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐸))
2523, 6ffvelcdmd 7059 . . 3 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐸))
2620, 21, 22, 24, 25, 3isinv 17728 . 2 (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐸)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐸)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀))))
2717, 19, 26mpbir2and 713 1 (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4597   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  Catccat 17631  Sectcsect 17712  Invcinv 17713   Func cfunc 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-sect 17715  df-inv 17716  df-func 17826
This theorem is referenced by:  funciso  17842
  Copyright terms: Public domain W3C validator