Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funcinv | Structured version Visualization version GIF version |
Description: The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
funcinv.b | ⊢ 𝐵 = (Base‘𝐷) |
funcinv.s | ⊢ 𝐼 = (Inv‘𝐷) |
funcinv.t | ⊢ 𝐽 = (Inv‘𝐸) |
funcinv.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
funcinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
funcinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
funcinv.m | ⊢ (𝜑 → 𝑀(𝑋𝐼𝑌)𝑁) |
Ref | Expression |
---|---|
funcinv | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
2 | eqid 2738 | . . 3 ⊢ (Sect‘𝐷) = (Sect‘𝐷) | |
3 | eqid 2738 | . . 3 ⊢ (Sect‘𝐸) = (Sect‘𝐸) | |
4 | funcinv.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
5 | funcinv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | funcinv.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | funcinv.m | . . . . 5 ⊢ (𝜑 → 𝑀(𝑋𝐼𝑌)𝑁) | |
8 | funcinv.s | . . . . . 6 ⊢ 𝐼 = (Inv‘𝐷) | |
9 | df-br 5071 | . . . . . . . . 9 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
10 | 4, 9 | sylib 217 | . . . . . . . 8 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
11 | funcrcl 17494 | . . . . . . . 8 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
13 | 12 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) |
14 | 1, 8, 13, 5, 6, 2 | isinv 17389 | . . . . 5 ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀))) |
15 | 7, 14 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀)) |
16 | 15 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀(𝑋(Sect‘𝐷)𝑌)𝑁) |
17 | 1, 2, 3, 4, 5, 6, 16 | funcsect 17503 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
18 | 15 | simprd 495 | . . 3 ⊢ (𝜑 → 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀) |
19 | 1, 2, 3, 4, 6, 5, 18 | funcsect 17503 | . 2 ⊢ (𝜑 → ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)) |
20 | eqid 2738 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
21 | funcinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝐸) | |
22 | 12 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
23 | 1, 20, 4 | funcf1 17497 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐸)) |
24 | 23, 5 | ffvelrnd 6944 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐸)) |
25 | 23, 6 | ffvelrnd 6944 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐸)) |
26 | 20, 21, 22, 24, 25, 3 | isinv 17389 | . 2 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)))) |
27 | 17, 19, 26 | mpbir2and 709 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Catccat 17290 Sectcsect 17373 Invcinv 17374 Func cfunc 17485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-ixp 8644 df-sect 17376 df-inv 17377 df-func 17489 |
This theorem is referenced by: funciso 17505 |
Copyright terms: Public domain | W3C validator |