| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcinv | Structured version Visualization version GIF version | ||
| Description: The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcinv.b | ⊢ 𝐵 = (Base‘𝐷) |
| funcinv.s | ⊢ 𝐼 = (Inv‘𝐷) |
| funcinv.t | ⊢ 𝐽 = (Inv‘𝐸) |
| funcinv.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| funcinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| funcinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| funcinv.m | ⊢ (𝜑 → 𝑀(𝑋𝐼𝑌)𝑁) |
| Ref | Expression |
|---|---|
| funcinv | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 2 | eqid 2730 | . . 3 ⊢ (Sect‘𝐷) = (Sect‘𝐷) | |
| 3 | eqid 2730 | . . 3 ⊢ (Sect‘𝐸) = (Sect‘𝐸) | |
| 4 | funcinv.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 5 | funcinv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | funcinv.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | funcinv.m | . . . . 5 ⊢ (𝜑 → 𝑀(𝑋𝐼𝑌)𝑁) | |
| 8 | funcinv.s | . . . . . 6 ⊢ 𝐼 = (Inv‘𝐷) | |
| 9 | df-br 5090 | . . . . . . . . 9 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 10 | 4, 9 | sylib 218 | . . . . . . . 8 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 11 | funcrcl 17762 | . . . . . . . 8 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 13 | 12 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 14 | 1, 8, 13, 5, 6, 2 | isinv 17659 | . . . . 5 ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀))) |
| 15 | 7, 14 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀)) |
| 16 | 15 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀(𝑋(Sect‘𝐷)𝑌)𝑁) |
| 17 | 1, 2, 3, 4, 5, 6, 16 | funcsect 17771 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
| 18 | 15 | simprd 495 | . . 3 ⊢ (𝜑 → 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀) |
| 19 | 1, 2, 3, 4, 6, 5, 18 | funcsect 17771 | . 2 ⊢ (𝜑 → ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)) |
| 20 | eqid 2730 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 21 | funcinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝐸) | |
| 22 | 12 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 23 | 1, 20, 4 | funcf1 17765 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐸)) |
| 24 | 23, 5 | ffvelcdmd 7013 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐸)) |
| 25 | 23, 6 | ffvelcdmd 7013 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐸)) |
| 26 | 20, 21, 22, 24, 25, 3 | isinv 17659 | . 2 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)))) |
| 27 | 17, 19, 26 | mpbir2and 713 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 〈cop 4580 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 Catccat 17562 Sectcsect 17643 Invcinv 17644 Func cfunc 17753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-ixp 8817 df-sect 17646 df-inv 17647 df-func 17757 |
| This theorem is referenced by: funciso 17773 |
| Copyright terms: Public domain | W3C validator |