MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcinv Structured version   Visualization version   GIF version

Theorem funcinv 17504
Description: The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
funcinv.b 𝐵 = (Base‘𝐷)
funcinv.s 𝐼 = (Inv‘𝐷)
funcinv.t 𝐽 = (Inv‘𝐸)
funcinv.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
funcinv.x (𝜑𝑋𝐵)
funcinv.y (𝜑𝑌𝐵)
funcinv.m (𝜑𝑀(𝑋𝐼𝑌)𝑁)
Assertion
Ref Expression
funcinv (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁))

Proof of Theorem funcinv
StepHypRef Expression
1 funcinv.b . . 3 𝐵 = (Base‘𝐷)
2 eqid 2738 . . 3 (Sect‘𝐷) = (Sect‘𝐷)
3 eqid 2738 . . 3 (Sect‘𝐸) = (Sect‘𝐸)
4 funcinv.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
5 funcinv.x . . 3 (𝜑𝑋𝐵)
6 funcinv.y . . 3 (𝜑𝑌𝐵)
7 funcinv.m . . . . 5 (𝜑𝑀(𝑋𝐼𝑌)𝑁)
8 funcinv.s . . . . . 6 𝐼 = (Inv‘𝐷)
9 df-br 5071 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
104, 9sylib 217 . . . . . . . 8 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
11 funcrcl 17494 . . . . . . . 8 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1210, 11syl 17 . . . . . . 7 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1312simpld 494 . . . . . 6 (𝜑𝐷 ∈ Cat)
141, 8, 13, 5, 6, 2isinv 17389 . . . . 5 (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁𝑁(𝑌(Sect‘𝐷)𝑋)𝑀)))
157, 14mpbid 231 . . . 4 (𝜑 → (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁𝑁(𝑌(Sect‘𝐷)𝑋)𝑀))
1615simpld 494 . . 3 (𝜑𝑀(𝑋(Sect‘𝐷)𝑌)𝑁)
171, 2, 3, 4, 5, 6, 16funcsect 17503 . 2 (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐸)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁))
1815simprd 495 . . 3 (𝜑𝑁(𝑌(Sect‘𝐷)𝑋)𝑀)
191, 2, 3, 4, 6, 5, 18funcsect 17503 . 2 (𝜑 → ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐸)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀))
20 eqid 2738 . . 3 (Base‘𝐸) = (Base‘𝐸)
21 funcinv.t . . 3 𝐽 = (Inv‘𝐸)
2212simprd 495 . . 3 (𝜑𝐸 ∈ Cat)
231, 20, 4funcf1 17497 . . . 4 (𝜑𝐹:𝐵⟶(Base‘𝐸))
2423, 5ffvelrnd 6944 . . 3 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐸))
2523, 6ffvelrnd 6944 . . 3 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐸))
2620, 21, 22, 24, 25, 3isinv 17389 . 2 (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐸)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐸)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀))))
2717, 19, 26mpbir2and 709 1 (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  Catccat 17290  Sectcsect 17373  Invcinv 17374   Func cfunc 17485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-ixp 8644  df-sect 17376  df-inv 17377  df-func 17489
This theorem is referenced by:  funciso  17505
  Copyright terms: Public domain W3C validator