![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcinv | Structured version Visualization version GIF version |
Description: The image of an inverse under a functor is an inverse. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
funcinv.b | ⊢ 𝐵 = (Base‘𝐷) |
funcinv.s | ⊢ 𝐼 = (Inv‘𝐷) |
funcinv.t | ⊢ 𝐽 = (Inv‘𝐸) |
funcinv.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
funcinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
funcinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
funcinv.m | ⊢ (𝜑 → 𝑀(𝑋𝐼𝑌)𝑁) |
Ref | Expression |
---|---|
funcinv | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
2 | eqid 2778 | . . 3 ⊢ (Sect‘𝐷) = (Sect‘𝐷) | |
3 | eqid 2778 | . . 3 ⊢ (Sect‘𝐸) = (Sect‘𝐸) | |
4 | funcinv.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
5 | funcinv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | funcinv.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | funcinv.m | . . . . 5 ⊢ (𝜑 → 𝑀(𝑋𝐼𝑌)𝑁) | |
8 | funcinv.s | . . . . . 6 ⊢ 𝐼 = (Inv‘𝐷) | |
9 | df-br 4887 | . . . . . . . . 9 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
10 | 4, 9 | sylib 210 | . . . . . . . 8 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
11 | funcrcl 16908 | . . . . . . . 8 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
13 | 12 | simpld 490 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) |
14 | 1, 8, 13, 5, 6, 2 | isinv 16805 | . . . . 5 ⊢ (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀))) |
15 | 7, 14 | mpbid 224 | . . . 4 ⊢ (𝜑 → (𝑀(𝑋(Sect‘𝐷)𝑌)𝑁 ∧ 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀)) |
16 | 15 | simpld 490 | . . 3 ⊢ (𝜑 → 𝑀(𝑋(Sect‘𝐷)𝑌)𝑁) |
17 | 1, 2, 3, 4, 5, 6, 16 | funcsect 16917 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
18 | 15 | simprd 491 | . . 3 ⊢ (𝜑 → 𝑁(𝑌(Sect‘𝐷)𝑋)𝑀) |
19 | 1, 2, 3, 4, 6, 5, 18 | funcsect 16917 | . 2 ⊢ (𝜑 → ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)) |
20 | eqid 2778 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
21 | funcinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝐸) | |
22 | 12 | simprd 491 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
23 | 1, 20, 4 | funcf1 16911 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐸)) |
24 | 23, 5 | ffvelrnd 6624 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐸)) |
25 | 23, 6 | ffvelrnd 6624 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐸)) |
26 | 20, 21, 22, 24, 25, 3 | isinv 16805 | . 2 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Sect‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹‘𝑌)(Sect‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)))) |
27 | 17, 19, 26 | mpbir2and 703 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝐽(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 〈cop 4404 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 Catccat 16710 Sectcsect 16789 Invcinv 16790 Func cfunc 16899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-map 8142 df-ixp 8195 df-sect 16792 df-inv 16793 df-func 16903 |
This theorem is referenced by: funciso 16919 |
Copyright terms: Public domain | W3C validator |