| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funciso | Structured version Visualization version GIF version | ||
| Description: The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of [Adamek] p. 32. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| funciso.b | ⊢ 𝐵 = (Base‘𝐷) |
| funciso.s | ⊢ 𝐼 = (Iso‘𝐷) |
| funciso.t | ⊢ 𝐽 = (Iso‘𝐸) |
| funciso.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| funciso.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| funciso.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| funciso.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼𝑌)) |
| Ref | Expression |
|---|---|
| funciso | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 2 | eqid 2729 | . 2 ⊢ (Inv‘𝐸) = (Inv‘𝐸) | |
| 3 | funciso.f | . . . . 5 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 4 | df-br 5108 | . . . . 5 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 6 | funcrcl 17825 | . . . 4 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 8 | 7 | simprd 495 | . 2 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 9 | funciso.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 10 | 9, 1, 3 | funcf1 17828 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐸)) |
| 11 | funciso.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | 10, 11 | ffvelcdmd 7057 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐸)) |
| 13 | funciso.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 14 | 10, 13 | ffvelcdmd 7057 | . 2 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐸)) |
| 15 | funciso.t | . 2 ⊢ 𝐽 = (Iso‘𝐸) | |
| 16 | eqid 2729 | . . 3 ⊢ (Inv‘𝐷) = (Inv‘𝐷) | |
| 17 | funciso.s | . . . 4 ⊢ 𝐼 = (Iso‘𝐷) | |
| 18 | 7 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 19 | funciso.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼𝑌)) | |
| 20 | 9, 17, 16, 18, 11, 13, 19 | invisoinvr 17753 | . . 3 ⊢ (𝜑 → 𝑀(𝑋(Inv‘𝐷)𝑌)((𝑋(Inv‘𝐷)𝑌)‘𝑀)) |
| 21 | 9, 16, 2, 3, 11, 13, 20 | funcinv 17835 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Inv‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘((𝑋(Inv‘𝐷)𝑌)‘𝑀))) |
| 22 | 1, 2, 8, 12, 14, 15, 21 | inviso1 17728 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Catccat 17625 Invcinv 17707 Isociso 17708 Func cfunc 17816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-ixp 8871 df-cat 17629 df-cid 17630 df-sect 17709 df-inv 17710 df-iso 17711 df-func 17820 |
| This theorem is referenced by: ffthiso 17893 |
| Copyright terms: Public domain | W3C validator |