![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funciso | Structured version Visualization version GIF version |
Description: The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of [Adamek] p. 32. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
funciso.b | ⊢ 𝐵 = (Base‘𝐷) |
funciso.s | ⊢ 𝐼 = (Iso‘𝐷) |
funciso.t | ⊢ 𝐽 = (Iso‘𝐸) |
funciso.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
funciso.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
funciso.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
funciso.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼𝑌)) |
Ref | Expression |
---|---|
funciso | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2826 | . 2 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
2 | eqid 2826 | . 2 ⊢ (Inv‘𝐸) = (Inv‘𝐸) | |
3 | funciso.f | . . . . 5 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
4 | df-br 4875 | . . . . 5 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
5 | 3, 4 | sylib 210 | . . . 4 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
6 | funcrcl 16876 | . . . 4 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
8 | 7 | simprd 491 | . 2 ⊢ (𝜑 → 𝐸 ∈ Cat) |
9 | funciso.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
10 | 9, 1, 3 | funcf1 16879 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐸)) |
11 | funciso.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | 10, 11 | ffvelrnd 6610 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐸)) |
13 | funciso.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
14 | 10, 13 | ffvelrnd 6610 | . 2 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐸)) |
15 | funciso.t | . 2 ⊢ 𝐽 = (Iso‘𝐸) | |
16 | eqid 2826 | . . 3 ⊢ (Inv‘𝐷) = (Inv‘𝐷) | |
17 | funciso.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼𝑌)) | |
18 | 7 | simpld 490 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) |
19 | funciso.s | . . . . . 6 ⊢ 𝐼 = (Iso‘𝐷) | |
20 | 9, 16, 18, 11, 13, 19 | isoval 16778 | . . . . 5 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐷)𝑌)) |
21 | 17, 20 | eleqtrd 2909 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ dom (𝑋(Inv‘𝐷)𝑌)) |
22 | 9, 16, 18, 11, 13 | invfun 16777 | . . . . 5 ⊢ (𝜑 → Fun (𝑋(Inv‘𝐷)𝑌)) |
23 | funfvbrb 6580 | . . . . 5 ⊢ (Fun (𝑋(Inv‘𝐷)𝑌) → (𝑀 ∈ dom (𝑋(Inv‘𝐷)𝑌) ↔ 𝑀(𝑋(Inv‘𝐷)𝑌)((𝑋(Inv‘𝐷)𝑌)‘𝑀))) | |
24 | 22, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ dom (𝑋(Inv‘𝐷)𝑌) ↔ 𝑀(𝑋(Inv‘𝐷)𝑌)((𝑋(Inv‘𝐷)𝑌)‘𝑀))) |
25 | 21, 24 | mpbid 224 | . . 3 ⊢ (𝜑 → 𝑀(𝑋(Inv‘𝐷)𝑌)((𝑋(Inv‘𝐷)𝑌)‘𝑀)) |
26 | 9, 16, 2, 3, 11, 13, 25 | funcinv 16886 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Inv‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘((𝑋(Inv‘𝐷)𝑌)‘𝑀))) |
27 | 1, 2, 8, 12, 14, 15, 26 | inviso1 16779 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 〈cop 4404 class class class wbr 4874 dom cdm 5343 Fun wfun 6118 ‘cfv 6124 (class class class)co 6906 Basecbs 16223 Catccat 16678 Invcinv 16758 Isociso 16759 Func cfunc 16867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-1st 7429 df-2nd 7430 df-map 8125 df-ixp 8177 df-cat 16682 df-cid 16683 df-sect 16760 df-inv 16761 df-iso 16762 df-func 16871 |
This theorem is referenced by: ffthiso 16942 |
Copyright terms: Public domain | W3C validator |