| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funciso | Structured version Visualization version GIF version | ||
| Description: The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of [Adamek] p. 32. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| funciso.b | ⊢ 𝐵 = (Base‘𝐷) |
| funciso.s | ⊢ 𝐼 = (Iso‘𝐷) |
| funciso.t | ⊢ 𝐽 = (Iso‘𝐸) |
| funciso.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| funciso.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| funciso.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| funciso.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼𝑌)) |
| Ref | Expression |
|---|---|
| funciso | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . 2 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 2 | eqid 2734 | . 2 ⊢ (Inv‘𝐸) = (Inv‘𝐸) | |
| 3 | funciso.f | . . . . 5 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 4 | df-br 5118 | . . . . 5 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 6 | funcrcl 17863 | . . . 4 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 8 | 7 | simprd 495 | . 2 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 9 | funciso.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 10 | 9, 1, 3 | funcf1 17866 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐸)) |
| 11 | funciso.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | 10, 11 | ffvelcdmd 7072 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐸)) |
| 13 | funciso.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 14 | 10, 13 | ffvelcdmd 7072 | . 2 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐸)) |
| 15 | funciso.t | . 2 ⊢ 𝐽 = (Iso‘𝐸) | |
| 16 | eqid 2734 | . . 3 ⊢ (Inv‘𝐷) = (Inv‘𝐷) | |
| 17 | funciso.s | . . . 4 ⊢ 𝐼 = (Iso‘𝐷) | |
| 18 | 7 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 19 | funciso.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼𝑌)) | |
| 20 | 9, 17, 16, 18, 11, 13, 19 | invisoinvr 17791 | . . 3 ⊢ (𝜑 → 𝑀(𝑋(Inv‘𝐷)𝑌)((𝑋(Inv‘𝐷)𝑌)‘𝑀)) |
| 21 | 9, 16, 2, 3, 11, 13, 20 | funcinv 17873 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Inv‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘((𝑋(Inv‘𝐷)𝑌)‘𝑀))) |
| 22 | 1, 2, 8, 12, 14, 15, 21 | inviso1 17766 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 〈cop 4605 class class class wbr 5117 ‘cfv 6528 (class class class)co 7400 Basecbs 17215 Catccat 17663 Invcinv 17745 Isociso 17746 Func cfunc 17854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-map 8837 df-ixp 8907 df-cat 17667 df-cid 17668 df-sect 17747 df-inv 17748 df-iso 17749 df-func 17858 |
| This theorem is referenced by: ffthiso 17931 |
| Copyright terms: Public domain | W3C validator |