![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funciso | Structured version Visualization version GIF version |
Description: The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of [Adamek] p. 32. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
funciso.b | ⊢ 𝐵 = (Base‘𝐷) |
funciso.s | ⊢ 𝐼 = (Iso‘𝐷) |
funciso.t | ⊢ 𝐽 = (Iso‘𝐸) |
funciso.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
funciso.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
funciso.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
funciso.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼𝑌)) |
Ref | Expression |
---|---|
funciso | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
2 | eqid 2740 | . 2 ⊢ (Inv‘𝐸) = (Inv‘𝐸) | |
3 | funciso.f | . . . . 5 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
4 | df-br 5167 | . . . . 5 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
5 | 3, 4 | sylib 218 | . . . 4 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
6 | funcrcl 17927 | . . . 4 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
8 | 7 | simprd 495 | . 2 ⊢ (𝜑 → 𝐸 ∈ Cat) |
9 | funciso.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
10 | 9, 1, 3 | funcf1 17930 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐸)) |
11 | funciso.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | 10, 11 | ffvelcdmd 7119 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐸)) |
13 | funciso.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
14 | 10, 13 | ffvelcdmd 7119 | . 2 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐸)) |
15 | funciso.t | . 2 ⊢ 𝐽 = (Iso‘𝐸) | |
16 | eqid 2740 | . . 3 ⊢ (Inv‘𝐷) = (Inv‘𝐷) | |
17 | funciso.s | . . . 4 ⊢ 𝐼 = (Iso‘𝐷) | |
18 | 7 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
19 | funciso.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼𝑌)) | |
20 | 9, 17, 16, 18, 11, 13, 19 | invisoinvr 17852 | . . 3 ⊢ (𝜑 → 𝑀(𝑋(Inv‘𝐷)𝑌)((𝑋(Inv‘𝐷)𝑌)‘𝑀)) |
21 | 9, 16, 2, 3, 11, 13, 20 | funcinv 17937 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Inv‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘((𝑋(Inv‘𝐷)𝑌)‘𝑀))) |
22 | 1, 2, 8, 12, 14, 15, 21 | inviso1 17827 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Catccat 17722 Invcinv 17806 Isociso 17807 Func cfunc 17918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-ixp 8956 df-cat 17726 df-cid 17727 df-sect 17808 df-inv 17809 df-iso 17810 df-func 17922 |
This theorem is referenced by: ffthiso 17996 |
Copyright terms: Public domain | W3C validator |