| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funciso | Structured version Visualization version GIF version | ||
| Description: The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of [Adamek] p. 32. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| funciso.b | ⊢ 𝐵 = (Base‘𝐷) |
| funciso.s | ⊢ 𝐼 = (Iso‘𝐷) |
| funciso.t | ⊢ 𝐽 = (Iso‘𝐸) |
| funciso.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| funciso.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| funciso.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| funciso.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼𝑌)) |
| Ref | Expression |
|---|---|
| funciso | ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 2 | eqid 2733 | . 2 ⊢ (Inv‘𝐸) = (Inv‘𝐸) | |
| 3 | funciso.f | . . . . 5 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 4 | df-br 5096 | . . . . 5 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 6 | funcrcl 17778 | . . . 4 ⊢ (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 8 | 7 | simprd 495 | . 2 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 9 | funciso.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 10 | 9, 1, 3 | funcf1 17781 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐸)) |
| 11 | funciso.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | 10, 11 | ffvelcdmd 7027 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐸)) |
| 13 | funciso.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 14 | 10, 13 | ffvelcdmd 7027 | . 2 ⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐸)) |
| 15 | funciso.t | . 2 ⊢ 𝐽 = (Iso‘𝐸) | |
| 16 | eqid 2733 | . . 3 ⊢ (Inv‘𝐷) = (Inv‘𝐷) | |
| 17 | funciso.s | . . . 4 ⊢ 𝐼 = (Iso‘𝐷) | |
| 18 | 7 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 19 | funciso.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼𝑌)) | |
| 20 | 9, 17, 16, 18, 11, 13, 19 | invisoinvr 17706 | . . 3 ⊢ (𝜑 → 𝑀(𝑋(Inv‘𝐷)𝑌)((𝑋(Inv‘𝐷)𝑌)‘𝑀)) |
| 21 | 9, 16, 2, 3, 11, 13, 20 | funcinv 17788 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)(Inv‘𝐸)(𝐹‘𝑌))((𝑌𝐺𝑋)‘((𝑋(Inv‘𝐷)𝑌)‘𝑀))) |
| 22 | 1, 2, 8, 12, 14, 15, 21 | inviso1 17681 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4583 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Catccat 17578 Invcinv 17660 Isociso 17661 Func cfunc 17769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 df-ixp 8832 df-cat 17582 df-cid 17583 df-sect 17662 df-inv 17663 df-iso 17664 df-func 17773 |
| This theorem is referenced by: ffthiso 17846 |
| Copyright terms: Public domain | W3C validator |