MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsect Structured version   Visualization version   GIF version

Theorem funcsect 16884
Description: The image of a section under a functor is a section. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcsect.b 𝐵 = (Base‘𝐷)
funcsect.s 𝑆 = (Sect‘𝐷)
funcsect.t 𝑇 = (Sect‘𝐸)
funcsect.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
funcsect.x (𝜑𝑋𝐵)
funcsect.y (𝜑𝑌𝐵)
funcsect.m (𝜑𝑀(𝑋𝑆𝑌)𝑁)
Assertion
Ref Expression
funcsect (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁))

Proof of Theorem funcsect
StepHypRef Expression
1 funcsect.m . . . . . 6 (𝜑𝑀(𝑋𝑆𝑌)𝑁)
2 funcsect.b . . . . . . 7 𝐵 = (Base‘𝐷)
3 eqid 2825 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
4 eqid 2825 . . . . . . 7 (comp‘𝐷) = (comp‘𝐷)
5 eqid 2825 . . . . . . 7 (Id‘𝐷) = (Id‘𝐷)
6 funcsect.s . . . . . . 7 𝑆 = (Sect‘𝐷)
7 funcsect.f . . . . . . . . . 10 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
8 df-br 4874 . . . . . . . . . 10 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
97, 8sylib 210 . . . . . . . . 9 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
10 funcrcl 16875 . . . . . . . . 9 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
119, 10syl 17 . . . . . . . 8 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1211simpld 490 . . . . . . 7 (𝜑𝐷 ∈ Cat)
13 funcsect.x . . . . . . 7 (𝜑𝑋𝐵)
14 funcsect.y . . . . . . 7 (𝜑𝑌𝐵)
152, 3, 4, 5, 6, 12, 13, 14issect 16765 . . . . . 6 (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ (𝑀 ∈ (𝑋(Hom ‘𝐷)𝑌) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐷)𝑋) ∧ (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑋)𝑀) = ((Id‘𝐷)‘𝑋))))
161, 15mpbid 224 . . . . 5 (𝜑 → (𝑀 ∈ (𝑋(Hom ‘𝐷)𝑌) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐷)𝑋) ∧ (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑋)𝑀) = ((Id‘𝐷)‘𝑋)))
1716simp3d 1180 . . . 4 (𝜑 → (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑋)𝑀) = ((Id‘𝐷)‘𝑋))
1817fveq2d 6437 . . 3 (𝜑 → ((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)))
19 eqid 2825 . . . 4 (comp‘𝐸) = (comp‘𝐸)
2016simp1d 1178 . . . 4 (𝜑𝑀 ∈ (𝑋(Hom ‘𝐷)𝑌))
2116simp2d 1179 . . . 4 (𝜑𝑁 ∈ (𝑌(Hom ‘𝐷)𝑋))
222, 3, 4, 19, 7, 13, 14, 13, 20, 21funcco 16883 . . 3 (𝜑 → ((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐷)𝑋)𝑀)) = (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)))
23 eqid 2825 . . . 4 (Id‘𝐸) = (Id‘𝐸)
242, 5, 23, 7, 13funcid 16882 . . 3 (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
2518, 22, 243eqtr3d 2869 . 2 (𝜑 → (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐸)‘(𝐹𝑋)))
26 eqid 2825 . . 3 (Base‘𝐸) = (Base‘𝐸)
27 eqid 2825 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
28 funcsect.t . . 3 𝑇 = (Sect‘𝐸)
2911simprd 491 . . 3 (𝜑𝐸 ∈ Cat)
302, 26, 7funcf1 16878 . . . 4 (𝜑𝐹:𝐵⟶(Base‘𝐸))
3130, 13ffvelrnd 6609 . . 3 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐸))
3230, 14ffvelrnd 6609 . . 3 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐸))
332, 3, 27, 7, 13, 14funcf2 16880 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐷)𝑌)⟶((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)))
3433, 20ffvelrnd 6609 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹𝑋)(Hom ‘𝐸)(𝐹𝑌)))
352, 3, 27, 7, 14, 13funcf2 16880 . . . 4 (𝜑 → (𝑌𝐺𝑋):(𝑌(Hom ‘𝐷)𝑋)⟶((𝐹𝑌)(Hom ‘𝐸)(𝐹𝑋)))
3635, 21ffvelrnd 6609 . . 3 (𝜑 → ((𝑌𝐺𝑋)‘𝑁) ∈ ((𝐹𝑌)(Hom ‘𝐸)(𝐹𝑋)))
3726, 27, 19, 23, 28, 29, 31, 32, 34, 36issect2 16766 . 2 (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐸)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐸)‘(𝐹𝑋))))
3825, 37mpbird 249 1 (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  cop 4403   class class class wbr 4873  cfv 6123  (class class class)co 6905  Basecbs 16222  Hom chom 16316  compcco 16317  Catccat 16677  Idccid 16678  Sectcsect 16756   Func cfunc 16866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-map 8124  df-ixp 8176  df-sect 16759  df-func 16870
This theorem is referenced by:  funcinv  16885
  Copyright terms: Public domain W3C validator