Proof of Theorem funcsect
Step | Hyp | Ref
| Expression |
1 | | funcsect.m |
. . . . . 6
⊢ (𝜑 → 𝑀(𝑋𝑆𝑌)𝑁) |
2 | | funcsect.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐷) |
3 | | eqid 2738 |
. . . . . . 7
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
4 | | eqid 2738 |
. . . . . . 7
⊢
(comp‘𝐷) =
(comp‘𝐷) |
5 | | eqid 2738 |
. . . . . . 7
⊢
(Id‘𝐷) =
(Id‘𝐷) |
6 | | funcsect.s |
. . . . . . 7
⊢ 𝑆 = (Sect‘𝐷) |
7 | | funcsect.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
8 | | df-br 5075 |
. . . . . . . . . 10
⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
9 | 7, 8 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
10 | | funcrcl 17578 |
. . . . . . . . 9
⊢
(〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
12 | 11 | simpld 495 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ Cat) |
13 | | funcsect.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
14 | | funcsect.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
15 | 2, 3, 4, 5, 6, 12,
13, 14 | issect 17465 |
. . . . . 6
⊢ (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ (𝑀 ∈ (𝑋(Hom ‘𝐷)𝑌) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐷)𝑋) ∧ (𝑁(〈𝑋, 𝑌〉(comp‘𝐷)𝑋)𝑀) = ((Id‘𝐷)‘𝑋)))) |
16 | 1, 15 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝑀 ∈ (𝑋(Hom ‘𝐷)𝑌) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐷)𝑋) ∧ (𝑁(〈𝑋, 𝑌〉(comp‘𝐷)𝑋)𝑀) = ((Id‘𝐷)‘𝑋))) |
17 | 16 | simp3d 1143 |
. . . 4
⊢ (𝜑 → (𝑁(〈𝑋, 𝑌〉(comp‘𝐷)𝑋)𝑀) = ((Id‘𝐷)‘𝑋)) |
18 | 17 | fveq2d 6778 |
. . 3
⊢ (𝜑 → ((𝑋𝐺𝑋)‘(𝑁(〈𝑋, 𝑌〉(comp‘𝐷)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))) |
19 | | eqid 2738 |
. . . 4
⊢
(comp‘𝐸) =
(comp‘𝐸) |
20 | 16 | simp1d 1141 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (𝑋(Hom ‘𝐷)𝑌)) |
21 | 16 | simp2d 1142 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (𝑌(Hom ‘𝐷)𝑋)) |
22 | 2, 3, 4, 19, 7, 13, 14, 13, 20, 21 | funcco 17586 |
. . 3
⊢ (𝜑 → ((𝑋𝐺𝑋)‘(𝑁(〈𝑋, 𝑌〉(comp‘𝐷)𝑋)𝑀)) = (((𝑌𝐺𝑋)‘𝑁)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀))) |
23 | | eqid 2738 |
. . . 4
⊢
(Id‘𝐸) =
(Id‘𝐸) |
24 | 2, 5, 23, 7, 13 | funcid 17585 |
. . 3
⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
25 | 18, 22, 24 | 3eqtr3d 2786 |
. 2
⊢ (𝜑 → (((𝑌𝐺𝑋)‘𝑁)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
26 | | eqid 2738 |
. . 3
⊢
(Base‘𝐸) =
(Base‘𝐸) |
27 | | eqid 2738 |
. . 3
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
28 | | funcsect.t |
. . 3
⊢ 𝑇 = (Sect‘𝐸) |
29 | 11 | simprd 496 |
. . 3
⊢ (𝜑 → 𝐸 ∈ Cat) |
30 | 2, 26, 7 | funcf1 17581 |
. . . 4
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐸)) |
31 | 30, 13 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐸)) |
32 | 30, 14 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐸)) |
33 | 2, 3, 27, 7, 13, 14 | funcf2 17583 |
. . . 4
⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐷)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝐸)(𝐹‘𝑌))) |
34 | 33, 20 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)(Hom ‘𝐸)(𝐹‘𝑌))) |
35 | 2, 3, 27, 7, 14, 13 | funcf2 17583 |
. . . 4
⊢ (𝜑 → (𝑌𝐺𝑋):(𝑌(Hom ‘𝐷)𝑋)⟶((𝐹‘𝑌)(Hom ‘𝐸)(𝐹‘𝑋))) |
36 | 35, 21 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → ((𝑌𝐺𝑋)‘𝑁) ∈ ((𝐹‘𝑌)(Hom ‘𝐸)(𝐹‘𝑋))) |
37 | 26, 27, 19, 23, 28, 29, 31, 32, 34, 36 | issect2 17466 |
. 2
⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝑇(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑌𝐺𝑋)‘𝑁)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐸)‘(𝐹‘𝑋)))) |
38 | 25, 37 | mpbird 256 |
1
⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝑇(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |