Proof of Theorem funcsect
| Step | Hyp | Ref
| Expression |
| 1 | | funcsect.m |
. . . . . 6
⊢ (𝜑 → 𝑀(𝑋𝑆𝑌)𝑁) |
| 2 | | funcsect.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐷) |
| 3 | | eqid 2734 |
. . . . . . 7
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 4 | | eqid 2734 |
. . . . . . 7
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 5 | | eqid 2734 |
. . . . . . 7
⊢
(Id‘𝐷) =
(Id‘𝐷) |
| 6 | | funcsect.s |
. . . . . . 7
⊢ 𝑆 = (Sect‘𝐷) |
| 7 | | funcsect.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 8 | | df-br 5124 |
. . . . . . . . . 10
⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 9 | 7, 8 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 10 | | funcrcl 17879 |
. . . . . . . . 9
⊢
(〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 12 | 11 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 13 | | funcsect.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 14 | | funcsect.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 15 | 2, 3, 4, 5, 6, 12,
13, 14 | issect 17768 |
. . . . . 6
⊢ (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ (𝑀 ∈ (𝑋(Hom ‘𝐷)𝑌) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐷)𝑋) ∧ (𝑁(〈𝑋, 𝑌〉(comp‘𝐷)𝑋)𝑀) = ((Id‘𝐷)‘𝑋)))) |
| 16 | 1, 15 | mpbid 232 |
. . . . 5
⊢ (𝜑 → (𝑀 ∈ (𝑋(Hom ‘𝐷)𝑌) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐷)𝑋) ∧ (𝑁(〈𝑋, 𝑌〉(comp‘𝐷)𝑋)𝑀) = ((Id‘𝐷)‘𝑋))) |
| 17 | 16 | simp3d 1144 |
. . . 4
⊢ (𝜑 → (𝑁(〈𝑋, 𝑌〉(comp‘𝐷)𝑋)𝑀) = ((Id‘𝐷)‘𝑋)) |
| 18 | 17 | fveq2d 6890 |
. . 3
⊢ (𝜑 → ((𝑋𝐺𝑋)‘(𝑁(〈𝑋, 𝑌〉(comp‘𝐷)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))) |
| 19 | | eqid 2734 |
. . . 4
⊢
(comp‘𝐸) =
(comp‘𝐸) |
| 20 | 16 | simp1d 1142 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (𝑋(Hom ‘𝐷)𝑌)) |
| 21 | 16 | simp2d 1143 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (𝑌(Hom ‘𝐷)𝑋)) |
| 22 | 2, 3, 4, 19, 7, 13, 14, 13, 20, 21 | funcco 17887 |
. . 3
⊢ (𝜑 → ((𝑋𝐺𝑋)‘(𝑁(〈𝑋, 𝑌〉(comp‘𝐷)𝑋)𝑀)) = (((𝑌𝐺𝑋)‘𝑁)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀))) |
| 23 | | eqid 2734 |
. . . 4
⊢
(Id‘𝐸) =
(Id‘𝐸) |
| 24 | 2, 5, 23, 7, 13 | funcid 17886 |
. . 3
⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
| 25 | 18, 22, 24 | 3eqtr3d 2777 |
. 2
⊢ (𝜑 → (((𝑌𝐺𝑋)‘𝑁)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
| 26 | | eqid 2734 |
. . 3
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 27 | | eqid 2734 |
. . 3
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 28 | | funcsect.t |
. . 3
⊢ 𝑇 = (Sect‘𝐸) |
| 29 | 11 | simprd 495 |
. . 3
⊢ (𝜑 → 𝐸 ∈ Cat) |
| 30 | 2, 26, 7 | funcf1 17882 |
. . . 4
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐸)) |
| 31 | 30, 13 | ffvelcdmd 7085 |
. . 3
⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐸)) |
| 32 | 30, 14 | ffvelcdmd 7085 |
. . 3
⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐸)) |
| 33 | 2, 3, 27, 7, 13, 14 | funcf2 17884 |
. . . 4
⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐷)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝐸)(𝐹‘𝑌))) |
| 34 | 33, 20 | ffvelcdmd 7085 |
. . 3
⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)(Hom ‘𝐸)(𝐹‘𝑌))) |
| 35 | 2, 3, 27, 7, 14, 13 | funcf2 17884 |
. . . 4
⊢ (𝜑 → (𝑌𝐺𝑋):(𝑌(Hom ‘𝐷)𝑋)⟶((𝐹‘𝑌)(Hom ‘𝐸)(𝐹‘𝑋))) |
| 36 | 35, 21 | ffvelcdmd 7085 |
. . 3
⊢ (𝜑 → ((𝑌𝐺𝑋)‘𝑁) ∈ ((𝐹‘𝑌)(Hom ‘𝐸)(𝐹‘𝑋))) |
| 37 | 26, 27, 19, 23, 28, 29, 31, 32, 34, 36 | issect2 17769 |
. 2
⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝑇(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑌𝐺𝑋)‘𝑁)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐸)‘(𝐹‘𝑋)))) |
| 38 | 25, 37 | mpbird 257 |
1
⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝑇(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁)) |