| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzofi | Structured version Visualization version GIF version | ||
| Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzofi | ⊢ (𝑀..^𝑁) ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzoval 13563 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 3 | fzfi 13879 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ Fin | |
| 4 | 2, 3 | eqeltrdi 2836 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
| 5 | fzof 13559 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 6 | 5 | fdmi 6663 | . . . 4 ⊢ dom ..^ = (ℤ × ℤ) |
| 7 | 6 | ndmov 7533 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
| 8 | 0fi 8967 | . . 3 ⊢ ∅ ∈ Fin | |
| 9 | 7, 8 | eqeltrdi 2836 | . 2 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
| 10 | 4, 9 | pm2.61i 182 | 1 ⊢ (𝑀..^𝑁) ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4284 𝒫 cpw 4551 × cxp 5617 (class class class)co 7349 Fincfn 8872 1c1 11010 − cmin 11347 ℤcz 12471 ...cfz 13410 ..^cfzo 13557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 |
| This theorem is referenced by: uzindi 13889 fnfzo0hashnn0 14358 tpf1o 14408 wrdfin 14439 hashwrdn 14454 ccatalpha 14500 s7f1o 14873 telfsumo 15709 fsumparts 15713 geoserg 15773 pwdif 15775 bitsfi 16348 bitsinv1 16353 bitsinvp1 16360 sadcaddlem 16368 sadadd2lem 16370 sadadd3 16372 sadaddlem 16377 sadasslem 16381 sadeq 16383 crth 16689 phimullem 16690 eulerthlem2 16693 eulerth 16694 phisum 16702 prmgaplem3 16965 cshwshashnsame 17015 ablfaclem3 19968 ablfac2 19970 iunmbl 25452 volsup 25455 dvfsumle 25924 dvfsumleOLD 25925 dvfsumge 25926 dvfsumabs 25927 advlogexp 26562 dchrisumlem1 27398 dchrisumlem2 27399 dchrisum 27401 vdegp1bi 29483 eupthfi 30149 trlsegvdeglem6 30169 fz1nnct 32747 wrdfsupp 32879 cycpmconjslem2 33098 evl1deg2 33513 evl1deg3 33514 gsummoncoe1fzo 33531 ply1degltdimlem 33595 sigapildsys 34135 carsgclctunlem3 34294 ccatmulgnn0dir 34516 ofcccat 34517 signsplypnf 34524 signsvvf 34553 prodfzo03 34577 fsum2dsub 34581 reprle 34588 reprsuc 34589 reprfi 34590 reprlt 34593 hashreprin 34594 reprgt 34595 reprinfz1 34596 reprpmtf1o 34600 breprexplema 34604 breprexplemc 34606 breprexpnat 34608 circlemeth 34614 circlemethnat 34615 circlevma 34616 circlemethhgt 34617 hgt750lema 34631 lpadlem2 34654 mvrsfpw 35489 poimirlem26 37636 poimirlem27 37637 poimirlem28 37638 poimirlem30 37640 frlmfzowrdb 42487 frlmvscadiccat 42489 fltnltalem 42645 amgm2d 44181 amgm3d 44182 amgm4d 44183 fourierdlem25 46123 fourierdlem70 46167 fourierdlem71 46168 fourierdlem73 46170 fourierdlem79 46176 fourierdlem80 46177 meaiunlelem 46459 2pwp1prm 47583 gpgorder 48053 nn0sumshdiglemA 48614 nn0sumshdiglemB 48615 nn0mullong 48620 amgmw2d 49799 |
| Copyright terms: Public domain | W3C validator |