![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzofi | Structured version Visualization version GIF version |
Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fzofi | ⊢ (𝑀..^𝑁) ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzoval 13717 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
3 | fzfi 14023 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ Fin | |
4 | 2, 3 | eqeltrdi 2852 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
5 | fzof 13713 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
6 | 5 | fdmi 6758 | . . . 4 ⊢ dom ..^ = (ℤ × ℤ) |
7 | 6 | ndmov 7634 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
8 | 0fi 9108 | . . 3 ⊢ ∅ ∈ Fin | |
9 | 7, 8 | eqeltrdi 2852 | . 2 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
10 | 4, 9 | pm2.61i 182 | 1 ⊢ (𝑀..^𝑁) ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 𝒫 cpw 4622 × cxp 5698 (class class class)co 7448 Fincfn 9003 1c1 11185 − cmin 11520 ℤcz 12639 ...cfz 13567 ..^cfzo 13711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 |
This theorem is referenced by: uzindi 14033 fnfzo0hashnn0 14500 tpf1o 14550 wrdfin 14580 hashwrdn 14595 ccatalpha 14641 s7f1o 15015 telfsumo 15850 fsumparts 15854 geoserg 15914 pwdif 15916 bitsfi 16483 bitsinv1 16488 bitsinvp1 16495 sadcaddlem 16503 sadadd2lem 16505 sadadd3 16507 sadaddlem 16512 sadasslem 16516 sadeq 16518 crth 16825 phimullem 16826 eulerthlem2 16829 eulerth 16830 phisum 16837 prmgaplem3 17100 cshwshashnsame 17151 ablfaclem3 20131 ablfac2 20133 iunmbl 25607 volsup 25610 dvfsumle 26080 dvfsumleOLD 26081 dvfsumge 26082 dvfsumabs 26083 advlogexp 26715 dchrisumlem1 27551 dchrisumlem2 27552 dchrisum 27554 vdegp1bi 29573 eupthfi 30237 trlsegvdeglem6 30257 fz1nnct 32808 wrdfsupp 32903 cycpmconjslem2 33148 evl1deg2 33567 evl1deg3 33568 gsummoncoe1fzo 33583 ply1degltdimlem 33635 sigapildsys 34126 carsgclctunlem3 34285 ccatmulgnn0dir 34519 ofcccat 34520 signsplypnf 34527 signsvvf 34556 prodfzo03 34580 fsum2dsub 34584 reprle 34591 reprsuc 34592 reprfi 34593 reprlt 34596 hashreprin 34597 reprgt 34598 reprinfz1 34599 reprpmtf1o 34603 breprexplema 34607 breprexplemc 34609 breprexpnat 34611 circlemeth 34617 circlemethnat 34618 circlevma 34619 circlemethhgt 34620 hgt750lema 34634 lpadlem2 34657 mvrsfpw 35474 poimirlem26 37606 poimirlem27 37607 poimirlem28 37608 poimirlem30 37610 frlmfzowrdb 42459 frlmvscadiccat 42461 fltnltalem 42617 amgm2d 44160 amgm3d 44161 amgm4d 44162 fourierdlem25 46053 fourierdlem70 46097 fourierdlem71 46098 fourierdlem73 46100 fourierdlem79 46106 fourierdlem80 46107 meaiunlelem 46389 2pwp1prm 47463 nn0sumshdiglemA 48353 nn0sumshdiglemB 48354 nn0mullong 48359 amgmw2d 48898 |
Copyright terms: Public domain | W3C validator |