| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzofi | Structured version Visualization version GIF version | ||
| Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzofi | ⊢ (𝑀..^𝑁) ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzoval 13621 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 3 | fzfi 13937 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ Fin | |
| 4 | 2, 3 | eqeltrdi 2836 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
| 5 | fzof 13617 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 6 | 5 | fdmi 6699 | . . . 4 ⊢ dom ..^ = (ℤ × ℤ) |
| 7 | 6 | ndmov 7573 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
| 8 | 0fi 9013 | . . 3 ⊢ ∅ ∈ Fin | |
| 9 | 7, 8 | eqeltrdi 2836 | . 2 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
| 10 | 4, 9 | pm2.61i 182 | 1 ⊢ (𝑀..^𝑁) ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4296 𝒫 cpw 4563 × cxp 5636 (class class class)co 7387 Fincfn 8918 1c1 11069 − cmin 11405 ℤcz 12529 ...cfz 13468 ..^cfzo 13615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 |
| This theorem is referenced by: uzindi 13947 fnfzo0hashnn0 14416 tpf1o 14466 wrdfin 14497 hashwrdn 14512 ccatalpha 14558 s7f1o 14932 telfsumo 15768 fsumparts 15772 geoserg 15832 pwdif 15834 bitsfi 16407 bitsinv1 16412 bitsinvp1 16419 sadcaddlem 16427 sadadd2lem 16429 sadadd3 16431 sadaddlem 16436 sadasslem 16440 sadeq 16442 crth 16748 phimullem 16749 eulerthlem2 16752 eulerth 16753 phisum 16761 prmgaplem3 17024 cshwshashnsame 17074 ablfaclem3 20019 ablfac2 20021 iunmbl 25454 volsup 25457 dvfsumle 25926 dvfsumleOLD 25927 dvfsumge 25928 dvfsumabs 25929 advlogexp 26564 dchrisumlem1 27400 dchrisumlem2 27401 dchrisum 27403 vdegp1bi 29465 eupthfi 30134 trlsegvdeglem6 30154 fz1nnct 32726 wrdfsupp 32858 cycpmconjslem2 33112 evl1deg2 33546 evl1deg3 33547 gsummoncoe1fzo 33563 ply1degltdimlem 33618 sigapildsys 34152 carsgclctunlem3 34311 ccatmulgnn0dir 34533 ofcccat 34534 signsplypnf 34541 signsvvf 34570 prodfzo03 34594 fsum2dsub 34598 reprle 34605 reprsuc 34606 reprfi 34607 reprlt 34610 hashreprin 34611 reprgt 34612 reprinfz1 34613 reprpmtf1o 34617 breprexplema 34621 breprexplemc 34623 breprexpnat 34625 circlemeth 34631 circlemethnat 34632 circlevma 34633 circlemethhgt 34634 hgt750lema 34648 lpadlem2 34671 mvrsfpw 35493 poimirlem26 37640 poimirlem27 37641 poimirlem28 37642 poimirlem30 37644 frlmfzowrdb 42492 frlmvscadiccat 42494 fltnltalem 42650 amgm2d 44187 amgm3d 44188 amgm4d 44189 fourierdlem25 46130 fourierdlem70 46174 fourierdlem71 46175 fourierdlem73 46177 fourierdlem79 46183 fourierdlem80 46184 meaiunlelem 46466 2pwp1prm 47590 gpgorder 48050 nn0sumshdiglemA 48608 nn0sumshdiglemB 48609 nn0mullong 48614 amgmw2d 49793 |
| Copyright terms: Public domain | W3C validator |