![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzofi | Structured version Visualization version GIF version |
Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fzofi | ⊢ (𝑀..^𝑁) ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzoval 12893 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
3 | fzfi 13194 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ Fin | |
4 | 2, 3 | syl6eqel 2893 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
5 | fzof 12889 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
6 | 5 | fdmi 6399 | . . . 4 ⊢ dom ..^ = (ℤ × ℤ) |
7 | 6 | ndmov 7195 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
8 | 0fin 8599 | . . 3 ⊢ ∅ ∈ Fin | |
9 | 7, 8 | syl6eqel 2893 | . 2 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
10 | 4, 9 | pm2.61i 183 | 1 ⊢ (𝑀..^𝑁) ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∅c0 4217 𝒫 cpw 4459 × cxp 5448 (class class class)co 7023 Fincfn 8364 1c1 10391 − cmin 10723 ℤcz 11835 ...cfz 12746 ..^cfzo 12887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 df-fzo 12888 |
This theorem is referenced by: uzindi 13204 fnfzo0hashnn0 13661 wrdfin 13732 hashwrdn 13748 ccatalpha 13795 telfsumo 14994 fsumparts 14998 geoserg 15058 pwdif 15060 bitsfi 15623 bitsinv1 15628 bitsinvp1 15635 sadcaddlem 15643 sadadd2lem 15645 sadadd3 15647 sadaddlem 15652 sadasslem 15656 sadeq 15658 crth 15948 phimullem 15949 eulerthlem2 15952 eulerth 15953 phisum 15960 prmgaplem3 16222 cshwshashnsame 16270 ablfaclem3 18930 ablfac2 18932 iunmbl 23841 volsup 23844 dvfsumle 24305 dvfsumge 24306 dvfsumabs 24307 advlogexp 24923 dchrisumlem1 25751 dchrisumlem2 25752 dchrisum 25754 vdegp1bi 27006 eupthfi 27670 trlsegvdeglem6 27690 fz1nnct 30206 cycpmconjslem2 30431 sigapildsys 31034 carsgclctunlem3 31191 ccatmulgnn0dir 31425 ofcccat 31426 signsplypnf 31433 signsvvf 31462 prodfzo03 31487 fsum2dsub 31491 reprle 31498 reprsuc 31499 reprfi 31500 reprlt 31503 hashreprin 31504 reprgt 31505 reprinfz1 31506 reprpmtf1o 31510 breprexplema 31514 breprexplemc 31516 breprexpnat 31518 circlemeth 31524 circlemethnat 31525 circlevma 31526 circlemethhgt 31527 hgt750lema 31541 lpadlem2 31564 mvrsfpw 32363 poimirlem26 34470 poimirlem27 34471 poimirlem28 34472 poimirlem30 34474 frlmfzowrdb 38691 frlmvscadiccat 38693 fltnltalem 38792 amgm2d 40058 amgm3d 40059 amgm4d 40060 fourierdlem25 41981 fourierdlem70 42025 fourierdlem71 42026 fourierdlem73 42028 fourierdlem79 42034 fourierdlem80 42035 meaiunlelem 42314 2pwp1prm 43255 nn0sumshdiglemA 44182 nn0sumshdiglemB 44183 nn0mullong 44188 amgmw2d 44407 |
Copyright terms: Public domain | W3C validator |