| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzofi | Structured version Visualization version GIF version | ||
| Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzofi | ⊢ (𝑀..^𝑁) ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzoval 13597 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 3 | fzfi 13913 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ Fin | |
| 4 | 2, 3 | eqeltrdi 2836 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
| 5 | fzof 13593 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 6 | 5 | fdmi 6681 | . . . 4 ⊢ dom ..^ = (ℤ × ℤ) |
| 7 | 6 | ndmov 7553 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
| 8 | 0fi 8990 | . . 3 ⊢ ∅ ∈ Fin | |
| 9 | 7, 8 | eqeltrdi 2836 | . 2 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
| 10 | 4, 9 | pm2.61i 182 | 1 ⊢ (𝑀..^𝑁) ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4292 𝒫 cpw 4559 × cxp 5629 (class class class)co 7369 Fincfn 8895 1c1 11045 − cmin 11381 ℤcz 12505 ...cfz 13444 ..^cfzo 13591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 |
| This theorem is referenced by: uzindi 13923 fnfzo0hashnn0 14392 tpf1o 14442 wrdfin 14473 hashwrdn 14488 ccatalpha 14534 s7f1o 14908 telfsumo 15744 fsumparts 15748 geoserg 15808 pwdif 15810 bitsfi 16383 bitsinv1 16388 bitsinvp1 16395 sadcaddlem 16403 sadadd2lem 16405 sadadd3 16407 sadaddlem 16412 sadasslem 16416 sadeq 16418 crth 16724 phimullem 16725 eulerthlem2 16728 eulerth 16729 phisum 16737 prmgaplem3 17000 cshwshashnsame 17050 ablfaclem3 20003 ablfac2 20005 iunmbl 25487 volsup 25490 dvfsumle 25959 dvfsumleOLD 25960 dvfsumge 25961 dvfsumabs 25962 advlogexp 26597 dchrisumlem1 27433 dchrisumlem2 27434 dchrisum 27436 vdegp1bi 29518 eupthfi 30184 trlsegvdeglem6 30204 fz1nnct 32776 wrdfsupp 32908 cycpmconjslem2 33127 evl1deg2 33539 evl1deg3 33540 gsummoncoe1fzo 33556 ply1degltdimlem 33611 sigapildsys 34145 carsgclctunlem3 34304 ccatmulgnn0dir 34526 ofcccat 34527 signsplypnf 34534 signsvvf 34563 prodfzo03 34587 fsum2dsub 34591 reprle 34598 reprsuc 34599 reprfi 34600 reprlt 34603 hashreprin 34604 reprgt 34605 reprinfz1 34606 reprpmtf1o 34610 breprexplema 34614 breprexplemc 34616 breprexpnat 34618 circlemeth 34624 circlemethnat 34625 circlevma 34626 circlemethhgt 34627 hgt750lema 34641 lpadlem2 34664 mvrsfpw 35486 poimirlem26 37633 poimirlem27 37634 poimirlem28 37635 poimirlem30 37637 frlmfzowrdb 42485 frlmvscadiccat 42487 fltnltalem 42643 amgm2d 44180 amgm3d 44181 amgm4d 44182 fourierdlem25 46123 fourierdlem70 46167 fourierdlem71 46168 fourierdlem73 46170 fourierdlem79 46176 fourierdlem80 46177 meaiunlelem 46459 2pwp1prm 47583 gpgorder 48043 nn0sumshdiglemA 48601 nn0sumshdiglemB 48602 nn0mullong 48607 amgmw2d 49786 |
| Copyright terms: Public domain | W3C validator |