Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzofi | Structured version Visualization version GIF version |
Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fzofi | ⊢ (𝑀..^𝑁) ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzoval 13397 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
3 | fzfi 13701 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ Fin | |
4 | 2, 3 | eqeltrdi 2848 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
5 | fzof 13393 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
6 | 5 | fdmi 6621 | . . . 4 ⊢ dom ..^ = (ℤ × ℤ) |
7 | 6 | ndmov 7465 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
8 | 0fin 8963 | . . 3 ⊢ ∅ ∈ Fin | |
9 | 7, 8 | eqeltrdi 2848 | . 2 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
10 | 4, 9 | pm2.61i 182 | 1 ⊢ (𝑀..^𝑁) ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ∅c0 4257 𝒫 cpw 4534 × cxp 5588 (class class class)co 7284 Fincfn 8742 1c1 10881 − cmin 11214 ℤcz 12328 ...cfz 13248 ..^cfzo 13391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-n0 12243 df-z 12329 df-uz 12592 df-fz 13249 df-fzo 13392 |
This theorem is referenced by: uzindi 13711 fnfzo0hashnn0 14172 wrdfin 14244 hashwrdn 14259 ccatalpha 14307 telfsumo 15523 fsumparts 15527 geoserg 15587 pwdif 15589 bitsfi 16153 bitsinv1 16158 bitsinvp1 16165 sadcaddlem 16173 sadadd2lem 16175 sadadd3 16177 sadaddlem 16182 sadasslem 16186 sadeq 16188 crth 16488 phimullem 16489 eulerthlem2 16492 eulerth 16493 phisum 16500 prmgaplem3 16763 cshwshashnsame 16814 ablfaclem3 19699 ablfac2 19701 iunmbl 24726 volsup 24729 dvfsumle 25194 dvfsumge 25195 dvfsumabs 25196 advlogexp 25819 dchrisumlem1 26646 dchrisumlem2 26647 dchrisum 26649 vdegp1bi 27913 eupthfi 28578 trlsegvdeglem6 28598 fz1nnct 31133 cycpmconjslem2 31431 sigapildsys 32139 carsgclctunlem3 32296 ccatmulgnn0dir 32530 ofcccat 32531 signsplypnf 32538 signsvvf 32567 prodfzo03 32592 fsum2dsub 32596 reprle 32603 reprsuc 32604 reprfi 32605 reprlt 32608 hashreprin 32609 reprgt 32610 reprinfz1 32611 reprpmtf1o 32615 breprexplema 32619 breprexplemc 32621 breprexpnat 32623 circlemeth 32629 circlemethnat 32630 circlevma 32631 circlemethhgt 32632 hgt750lema 32646 lpadlem2 32669 mvrsfpw 33477 poimirlem26 35812 poimirlem27 35813 poimirlem28 35814 poimirlem30 35816 frlmfzowrdb 40242 frlmvscadiccat 40244 fltnltalem 40506 amgm2d 41816 amgm3d 41817 amgm4d 41818 fourierdlem25 43680 fourierdlem70 43724 fourierdlem71 43725 fourierdlem73 43727 fourierdlem79 43733 fourierdlem80 43734 meaiunlelem 44013 2pwp1prm 45052 nn0sumshdiglemA 45976 nn0sumshdiglemB 45977 nn0mullong 45982 amgmw2d 46519 |
Copyright terms: Public domain | W3C validator |