| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzofi | Structured version Visualization version GIF version | ||
| Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzofi | ⊢ (𝑀..^𝑁) ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzoval 13560 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 3 | fzfi 13879 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ Fin | |
| 4 | 2, 3 | eqeltrdi 2839 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
| 5 | fzof 13556 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 6 | 5 | fdmi 6662 | . . . 4 ⊢ dom ..^ = (ℤ × ℤ) |
| 7 | 6 | ndmov 7530 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
| 8 | 0fi 8964 | . . 3 ⊢ ∅ ∈ Fin | |
| 9 | 7, 8 | eqeltrdi 2839 | . 2 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
| 10 | 4, 9 | pm2.61i 182 | 1 ⊢ (𝑀..^𝑁) ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4280 𝒫 cpw 4547 × cxp 5612 (class class class)co 7346 Fincfn 8869 1c1 11007 − cmin 11344 ℤcz 12468 ...cfz 13407 ..^cfzo 13554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 |
| This theorem is referenced by: uzindi 13889 fnfzo0hashnn0 14358 tpf1o 14408 wrdfin 14439 hashwrdn 14454 ccatalpha 14501 s7f1o 14873 telfsumo 15709 fsumparts 15713 geoserg 15773 pwdif 15775 bitsfi 16348 bitsinv1 16353 bitsinvp1 16360 sadcaddlem 16368 sadadd2lem 16370 sadadd3 16372 sadaddlem 16377 sadasslem 16381 sadeq 16383 crth 16689 phimullem 16690 eulerthlem2 16693 eulerth 16694 phisum 16702 prmgaplem3 16965 cshwshashnsame 17015 ablfaclem3 20001 ablfac2 20003 iunmbl 25481 volsup 25484 dvfsumle 25953 dvfsumleOLD 25954 dvfsumge 25955 dvfsumabs 25956 advlogexp 26591 dchrisumlem1 27427 dchrisumlem2 27428 dchrisum 27430 vdegp1bi 29516 eupthfi 30185 trlsegvdeglem6 30205 fz1nnct 32783 wrdfsupp 32918 cycpmconjslem2 33124 evl1deg2 33540 evl1deg3 33541 gsummoncoe1fzo 33558 ply1degltdimlem 33635 sigapildsys 34175 carsgclctunlem3 34333 ccatmulgnn0dir 34555 ofcccat 34556 signsplypnf 34563 signsvvf 34592 prodfzo03 34616 fsum2dsub 34620 reprle 34627 reprsuc 34628 reprfi 34629 reprlt 34632 hashreprin 34633 reprgt 34634 reprinfz1 34635 reprpmtf1o 34639 breprexplema 34643 breprexplemc 34645 breprexpnat 34647 circlemeth 34653 circlemethnat 34654 circlevma 34655 circlemethhgt 34656 hgt750lema 34670 lpadlem2 34693 mvrsfpw 35550 poimirlem26 37696 poimirlem27 37697 poimirlem28 37698 poimirlem30 37700 frlmfzowrdb 42607 frlmvscadiccat 42609 fltnltalem 42765 amgm2d 44301 amgm3d 44302 amgm4d 44303 fourierdlem25 46240 fourierdlem70 46284 fourierdlem71 46285 fourierdlem73 46287 fourierdlem79 46293 fourierdlem80 46294 meaiunlelem 46576 2pwp1prm 47699 gpgorder 48169 nn0sumshdiglemA 48730 nn0sumshdiglemB 48731 nn0mullong 48736 amgmw2d 49915 |
| Copyright terms: Public domain | W3C validator |