![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzofi | Structured version Visualization version GIF version |
Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fzofi | β’ (π..^π) β Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzoval 13633 | . . . 4 β’ (π β β€ β (π..^π) = (π...(π β 1))) | |
2 | 1 | adantl 483 | . . 3 β’ ((π β β€ β§ π β β€) β (π..^π) = (π...(π β 1))) |
3 | fzfi 13937 | . . 3 β’ (π...(π β 1)) β Fin | |
4 | 2, 3 | eqeltrdi 2842 | . 2 β’ ((π β β€ β§ π β β€) β (π..^π) β Fin) |
5 | fzof 13629 | . . . . 5 β’ ..^:(β€ Γ β€)βΆπ« β€ | |
6 | 5 | fdmi 6730 | . . . 4 β’ dom ..^ = (β€ Γ β€) |
7 | 6 | ndmov 7591 | . . 3 β’ (Β¬ (π β β€ β§ π β β€) β (π..^π) = β ) |
8 | 0fin 9171 | . . 3 β’ β β Fin | |
9 | 7, 8 | eqeltrdi 2842 | . 2 β’ (Β¬ (π β β€ β§ π β β€) β (π..^π) β Fin) |
10 | 4, 9 | pm2.61i 182 | 1 β’ (π..^π) β Fin |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β§ wa 397 = wceq 1542 β wcel 2107 β c0 4323 π« cpw 4603 Γ cxp 5675 (class class class)co 7409 Fincfn 8939 1c1 11111 β cmin 11444 β€cz 12558 ...cfz 13484 ..^cfzo 13627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 |
This theorem is referenced by: uzindi 13947 fnfzo0hashnn0 14410 wrdfin 14482 hashwrdn 14497 ccatalpha 14543 telfsumo 15748 fsumparts 15752 geoserg 15812 pwdif 15814 bitsfi 16378 bitsinv1 16383 bitsinvp1 16390 sadcaddlem 16398 sadadd2lem 16400 sadadd3 16402 sadaddlem 16407 sadasslem 16411 sadeq 16413 crth 16711 phimullem 16712 eulerthlem2 16715 eulerth 16716 phisum 16723 prmgaplem3 16986 cshwshashnsame 17037 ablfaclem3 19957 ablfac2 19959 iunmbl 25070 volsup 25073 dvfsumle 25538 dvfsumge 25539 dvfsumabs 25540 advlogexp 26163 dchrisumlem1 26992 dchrisumlem2 26993 dchrisum 26995 vdegp1bi 28794 eupthfi 29458 trlsegvdeglem6 29478 fz1nnct 32014 cycpmconjslem2 32314 gsummoncoe1fzo 32668 ply1degltdimlem 32707 sigapildsys 33160 carsgclctunlem3 33319 ccatmulgnn0dir 33553 ofcccat 33554 signsplypnf 33561 signsvvf 33590 prodfzo03 33615 fsum2dsub 33619 reprle 33626 reprsuc 33627 reprfi 33628 reprlt 33631 hashreprin 33632 reprgt 33633 reprinfz1 33634 reprpmtf1o 33638 breprexplema 33642 breprexplemc 33644 breprexpnat 33646 circlemeth 33652 circlemethnat 33653 circlevma 33654 circlemethhgt 33655 hgt750lema 33669 lpadlem2 33692 mvrsfpw 34497 gg-dvfsumle 35182 poimirlem26 36514 poimirlem27 36515 poimirlem28 36516 poimirlem30 36518 frlmfzowrdb 41078 frlmvscadiccat 41080 fltnltalem 41404 amgm2d 42950 amgm3d 42951 amgm4d 42952 fourierdlem25 44848 fourierdlem70 44892 fourierdlem71 44893 fourierdlem73 44895 fourierdlem79 44901 fourierdlem80 44902 meaiunlelem 45184 2pwp1prm 46257 nn0sumshdiglemA 47305 nn0sumshdiglemB 47306 nn0mullong 47311 amgmw2d 47851 |
Copyright terms: Public domain | W3C validator |