| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzofi | Structured version Visualization version GIF version | ||
| Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzofi | ⊢ (𝑀..^𝑁) ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzoval 13628 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 3 | fzfi 13944 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ Fin | |
| 4 | 2, 3 | eqeltrdi 2837 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
| 5 | fzof 13624 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 6 | 5 | fdmi 6702 | . . . 4 ⊢ dom ..^ = (ℤ × ℤ) |
| 7 | 6 | ndmov 7576 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
| 8 | 0fi 9016 | . . 3 ⊢ ∅ ∈ Fin | |
| 9 | 7, 8 | eqeltrdi 2837 | . 2 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
| 10 | 4, 9 | pm2.61i 182 | 1 ⊢ (𝑀..^𝑁) ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4299 𝒫 cpw 4566 × cxp 5639 (class class class)co 7390 Fincfn 8921 1c1 11076 − cmin 11412 ℤcz 12536 ...cfz 13475 ..^cfzo 13622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 |
| This theorem is referenced by: uzindi 13954 fnfzo0hashnn0 14423 tpf1o 14473 wrdfin 14504 hashwrdn 14519 ccatalpha 14565 s7f1o 14939 telfsumo 15775 fsumparts 15779 geoserg 15839 pwdif 15841 bitsfi 16414 bitsinv1 16419 bitsinvp1 16426 sadcaddlem 16434 sadadd2lem 16436 sadadd3 16438 sadaddlem 16443 sadasslem 16447 sadeq 16449 crth 16755 phimullem 16756 eulerthlem2 16759 eulerth 16760 phisum 16768 prmgaplem3 17031 cshwshashnsame 17081 ablfaclem3 20026 ablfac2 20028 iunmbl 25461 volsup 25464 dvfsumle 25933 dvfsumleOLD 25934 dvfsumge 25935 dvfsumabs 25936 advlogexp 26571 dchrisumlem1 27407 dchrisumlem2 27408 dchrisum 27410 vdegp1bi 29472 eupthfi 30141 trlsegvdeglem6 30161 fz1nnct 32733 wrdfsupp 32865 cycpmconjslem2 33119 evl1deg2 33553 evl1deg3 33554 gsummoncoe1fzo 33570 ply1degltdimlem 33625 sigapildsys 34159 carsgclctunlem3 34318 ccatmulgnn0dir 34540 ofcccat 34541 signsplypnf 34548 signsvvf 34577 prodfzo03 34601 fsum2dsub 34605 reprle 34612 reprsuc 34613 reprfi 34614 reprlt 34617 hashreprin 34618 reprgt 34619 reprinfz1 34620 reprpmtf1o 34624 breprexplema 34628 breprexplemc 34630 breprexpnat 34632 circlemeth 34638 circlemethnat 34639 circlevma 34640 circlemethhgt 34641 hgt750lema 34655 lpadlem2 34678 mvrsfpw 35500 poimirlem26 37647 poimirlem27 37648 poimirlem28 37649 poimirlem30 37651 frlmfzowrdb 42499 frlmvscadiccat 42501 fltnltalem 42657 amgm2d 44194 amgm3d 44195 amgm4d 44196 fourierdlem25 46137 fourierdlem70 46181 fourierdlem71 46182 fourierdlem73 46184 fourierdlem79 46190 fourierdlem80 46191 meaiunlelem 46473 2pwp1prm 47594 gpgorder 48054 nn0sumshdiglemA 48612 nn0sumshdiglemB 48613 nn0mullong 48618 amgmw2d 49797 |
| Copyright terms: Public domain | W3C validator |