Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzofi | Structured version Visualization version GIF version |
Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fzofi | ⊢ (𝑀..^𝑁) ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzoval 13101 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
2 | 1 | adantl 485 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
3 | fzfi 13402 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ Fin | |
4 | 2, 3 | eqeltrdi 2860 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
5 | fzof 13097 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
6 | 5 | fdmi 6514 | . . . 4 ⊢ dom ..^ = (ℤ × ℤ) |
7 | 6 | ndmov 7334 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
8 | 0fin 8753 | . . 3 ⊢ ∅ ∈ Fin | |
9 | 7, 8 | eqeltrdi 2860 | . 2 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
10 | 4, 9 | pm2.61i 185 | 1 ⊢ (𝑀..^𝑁) ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∅c0 4227 𝒫 cpw 4497 × cxp 5526 (class class class)co 7156 Fincfn 8540 1c1 10589 − cmin 10921 ℤcz 12033 ...cfz 12952 ..^cfzo 13095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-fzo 13096 |
This theorem is referenced by: uzindi 13412 fnfzo0hashnn0 13872 wrdfin 13944 hashwrdn 13959 ccatalpha 14007 telfsumo 15218 fsumparts 15222 geoserg 15282 pwdif 15284 bitsfi 15849 bitsinv1 15854 bitsinvp1 15861 sadcaddlem 15869 sadadd2lem 15871 sadadd3 15873 sadaddlem 15878 sadasslem 15882 sadeq 15884 crth 16183 phimullem 16184 eulerthlem2 16187 eulerth 16188 phisum 16195 prmgaplem3 16457 cshwshashnsame 16508 ablfaclem3 19290 ablfac2 19292 iunmbl 24266 volsup 24269 dvfsumle 24733 dvfsumge 24734 dvfsumabs 24735 advlogexp 25358 dchrisumlem1 26185 dchrisumlem2 26186 dchrisum 26188 vdegp1bi 27439 eupthfi 28102 trlsegvdeglem6 28122 fz1nnct 30660 cycpmconjslem2 30960 sigapildsys 31661 carsgclctunlem3 31818 ccatmulgnn0dir 32052 ofcccat 32053 signsplypnf 32060 signsvvf 32089 prodfzo03 32114 fsum2dsub 32118 reprle 32125 reprsuc 32126 reprfi 32127 reprlt 32130 hashreprin 32131 reprgt 32132 reprinfz1 32133 reprpmtf1o 32137 breprexplema 32141 breprexplemc 32143 breprexpnat 32145 circlemeth 32151 circlemethnat 32152 circlevma 32153 circlemethhgt 32154 hgt750lema 32168 lpadlem2 32191 mvrsfpw 32996 poimirlem26 35397 poimirlem27 35398 poimirlem28 35399 poimirlem30 35401 frlmfzowrdb 39777 frlmvscadiccat 39779 fltnltalem 40026 amgm2d 41312 amgm3d 41313 amgm4d 41314 fourierdlem25 43175 fourierdlem70 43219 fourierdlem71 43220 fourierdlem73 43222 fourierdlem79 43228 fourierdlem80 43229 meaiunlelem 43508 2pwp1prm 44523 nn0sumshdiglemA 45447 nn0sumshdiglemB 45448 nn0mullong 45453 amgmw2d 45817 |
Copyright terms: Public domain | W3C validator |