| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzofi | Structured version Visualization version GIF version | ||
| Description: Half-open integer sets are finite. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzofi | ⊢ (𝑀..^𝑁) ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzoval 13677 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 3 | fzfi 13990 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ Fin | |
| 4 | 2, 3 | eqeltrdi 2842 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
| 5 | fzof 13673 | . . . . 5 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 6 | 5 | fdmi 6717 | . . . 4 ⊢ dom ..^ = (ℤ × ℤ) |
| 7 | 6 | ndmov 7591 | . . 3 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
| 8 | 0fi 9056 | . . 3 ⊢ ∅ ∈ Fin | |
| 9 | 7, 8 | eqeltrdi 2842 | . 2 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin) |
| 10 | 4, 9 | pm2.61i 182 | 1 ⊢ (𝑀..^𝑁) ∈ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4308 𝒫 cpw 4575 × cxp 5652 (class class class)co 7405 Fincfn 8959 1c1 11130 − cmin 11466 ℤcz 12588 ...cfz 13524 ..^cfzo 13671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 |
| This theorem is referenced by: uzindi 14000 fnfzo0hashnn0 14469 tpf1o 14519 wrdfin 14550 hashwrdn 14565 ccatalpha 14611 s7f1o 14985 telfsumo 15818 fsumparts 15822 geoserg 15882 pwdif 15884 bitsfi 16456 bitsinv1 16461 bitsinvp1 16468 sadcaddlem 16476 sadadd2lem 16478 sadadd3 16480 sadaddlem 16485 sadasslem 16489 sadeq 16491 crth 16797 phimullem 16798 eulerthlem2 16801 eulerth 16802 phisum 16810 prmgaplem3 17073 cshwshashnsame 17123 ablfaclem3 20070 ablfac2 20072 iunmbl 25506 volsup 25509 dvfsumle 25978 dvfsumleOLD 25979 dvfsumge 25980 dvfsumabs 25981 advlogexp 26616 dchrisumlem1 27452 dchrisumlem2 27453 dchrisum 27455 vdegp1bi 29517 eupthfi 30186 trlsegvdeglem6 30206 fz1nnct 32780 wrdfsupp 32912 cycpmconjslem2 33166 evl1deg2 33590 evl1deg3 33591 gsummoncoe1fzo 33607 ply1degltdimlem 33662 sigapildsys 34193 carsgclctunlem3 34352 ccatmulgnn0dir 34574 ofcccat 34575 signsplypnf 34582 signsvvf 34611 prodfzo03 34635 fsum2dsub 34639 reprle 34646 reprsuc 34647 reprfi 34648 reprlt 34651 hashreprin 34652 reprgt 34653 reprinfz1 34654 reprpmtf1o 34658 breprexplema 34662 breprexplemc 34664 breprexpnat 34666 circlemeth 34672 circlemethnat 34673 circlevma 34674 circlemethhgt 34675 hgt750lema 34689 lpadlem2 34712 mvrsfpw 35528 poimirlem26 37670 poimirlem27 37671 poimirlem28 37672 poimirlem30 37674 frlmfzowrdb 42527 frlmvscadiccat 42529 fltnltalem 42685 amgm2d 44222 amgm3d 44223 amgm4d 44224 fourierdlem25 46161 fourierdlem70 46205 fourierdlem71 46206 fourierdlem73 46208 fourierdlem79 46214 fourierdlem80 46215 meaiunlelem 46497 2pwp1prm 47603 gpgorder 48063 nn0sumshdiglemA 48599 nn0sumshdiglemB 48600 nn0mullong 48605 amgmw2d 49668 |
| Copyright terms: Public domain | W3C validator |