Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ghmgrp1 | Structured version Visualization version GIF version |
Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
ghmgrp1 | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2738 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | eqid 2738 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2738 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | 1, 2, 3, 4 | isghm 18749 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑦 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)(𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) |
6 | 5 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) |
7 | 6 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Grpcgrp 18492 GrpHom cghm 18746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-ghm 18747 |
This theorem is referenced by: ghmid 18755 ghminv 18756 ghmsub 18757 ghmmhm 18759 ghmmulg 18761 ghmrn 18762 resghm2 18766 resghm2b 18767 ghmco 18769 ghmpreima 18771 ghmeql 18772 ghmnsgima 18773 ghmnsgpreima 18774 ghmeqker 18776 ghmf1 18778 ghmf1o 18779 ghmpropd 18787 isgim 18793 giclcl 18803 lactghmga 18928 invghm 19350 ghmplusg 19362 f1ghm0to0 19899 kerf1ghm 19902 evl1addd 21417 evl1subd 21418 ghmcnp 23174 evlsaddval 40200 gicabl 40840 |
Copyright terms: Public domain | W3C validator |