MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmgrp1 Structured version   Visualization version   GIF version

Theorem ghmgrp1 19206
Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmgrp1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)

Proof of Theorem ghmgrp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2736 . . . 4 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2736 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2736 . . . 4 (+g𝑇) = (+g𝑇)
51, 2, 3, 4isghm 19203 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑦 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)(𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥)))))
65simplbi 497 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
76simpld 494 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Grpcgrp 18921   GrpHom cghm 19200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-ghm 19201
This theorem is referenced by:  ghmid  19210  ghminv  19211  ghmsub  19212  ghmmhm  19214  ghmmulg  19216  ghmrn  19217  resghm2  19221  resghm2b  19222  ghmco  19224  ghmpreima  19226  ghmeql  19227  ghmnsgima  19228  ghmnsgpreima  19229  ghmeqker  19231  f1ghm0to0  19233  ghmf1  19234  kerf1ghm  19235  ghmf1o  19236  ghmpropd  19244  isgim  19250  giclcl  19261  ghmqusnsglem1  19268  ghmqusnsglem2  19269  ghmqusnsg  19270  ghmquskerlem1  19271  ghmquskerlem2  19273  ghmquskerlem3  19274  ghmqusker  19275  lactghmga  19391  invghm  19819  ghmplusg  19832  evl1addd  22284  evl1subd  22285  ghmcnp  24058  evlsaddval  42558  evladdval  42565  gicabl  43090
  Copyright terms: Public domain W3C validator