MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmgrp1 Structured version   Visualization version   GIF version

Theorem ghmgrp1 19237
Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmgrp1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)

Proof of Theorem ghmgrp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2736 . . . 4 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2736 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2736 . . . 4 (+g𝑇) = (+g𝑇)
51, 2, 3, 4isghm 19234 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑦 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)(𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥)))))
65simplbi 497 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
76simpld 494 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  wf 6556  cfv 6560  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  Grpcgrp 18952   GrpHom cghm 19231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-map 8869  df-ghm 19232
This theorem is referenced by:  ghmid  19241  ghminv  19242  ghmsub  19243  ghmmhm  19245  ghmmulg  19247  ghmrn  19248  resghm2  19252  resghm2b  19253  ghmco  19255  ghmpreima  19257  ghmeql  19258  ghmnsgima  19259  ghmnsgpreima  19260  ghmeqker  19262  f1ghm0to0  19264  ghmf1  19265  kerf1ghm  19266  ghmf1o  19267  ghmpropd  19275  isgim  19281  giclcl  19292  ghmqusnsglem1  19299  ghmqusnsglem2  19300  ghmqusnsg  19301  ghmquskerlem1  19302  ghmquskerlem2  19304  ghmquskerlem3  19305  ghmqusker  19306  lactghmga  19424  invghm  19852  ghmplusg  19865  evl1addd  22346  evl1subd  22347  ghmcnp  24124  evlsaddval  42583  evladdval  42590  gicabl  43116
  Copyright terms: Public domain W3C validator