| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmgrp1 | Structured version Visualization version GIF version | ||
| Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmgrp1 | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2733 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | eqid 2733 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2733 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 19131 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑦 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)(𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) |
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) |
| 7 | 6 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 Grpcgrp 18850 GrpHom cghm 19128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-map 8760 df-ghm 19129 |
| This theorem is referenced by: ghmid 19138 ghminv 19139 ghmsub 19140 ghmmhm 19142 ghmmulg 19144 ghmrn 19145 resghm2 19149 resghm2b 19150 ghmco 19152 ghmpreima 19154 ghmeql 19155 ghmnsgima 19156 ghmnsgpreima 19157 ghmeqker 19159 f1ghm0to0 19161 ghmf1 19162 kerf1ghm 19163 ghmf1o 19164 ghmpropd 19172 isgim 19178 giclcl 19189 ghmqusnsglem1 19196 ghmqusnsglem2 19197 ghmqusnsg 19198 ghmquskerlem1 19199 ghmquskerlem2 19201 ghmquskerlem3 19202 ghmqusker 19203 lactghmga 19321 invghm 19749 ghmplusg 19762 evl1addd 22259 evl1subd 22260 ghmcnp 24033 fxpsubg 33151 evlsaddval 42689 evladdval 42696 gicabl 43219 |
| Copyright terms: Public domain | W3C validator |