MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmgrp1 Structured version   Visualization version   GIF version

Theorem ghmgrp1 19131
Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmgrp1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)

Proof of Theorem ghmgrp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2731 . . . 4 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2731 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2731 . . . 4 (+g𝑇) = (+g𝑇)
51, 2, 3, 4isghm 19128 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑦 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)(𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥)))))
65simplbi 497 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
76simpld 494 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  Grpcgrp 18846   GrpHom cghm 19125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ghm 19126
This theorem is referenced by:  ghmid  19135  ghminv  19136  ghmsub  19137  ghmmhm  19139  ghmmulg  19141  ghmrn  19142  resghm2  19146  resghm2b  19147  ghmco  19149  ghmpreima  19151  ghmeql  19152  ghmnsgima  19153  ghmnsgpreima  19154  ghmeqker  19156  f1ghm0to0  19158  ghmf1  19159  kerf1ghm  19160  ghmf1o  19161  ghmpropd  19169  isgim  19175  giclcl  19186  ghmqusnsglem1  19193  ghmqusnsglem2  19194  ghmqusnsg  19195  ghmquskerlem1  19196  ghmquskerlem2  19198  ghmquskerlem3  19199  ghmqusker  19200  lactghmga  19318  invghm  19746  ghmplusg  19759  evl1addd  22257  evl1subd  22258  ghmcnp  24031  fxpsubg  33140  evlsaddval  42607  evladdval  42614  gicabl  43138
  Copyright terms: Public domain W3C validator