Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ghmgrp1 | Structured version Visualization version GIF version |
Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
ghmgrp1 | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2758 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | eqid 2758 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2758 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | 1, 2, 3, 4 | isghm 18438 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑦 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)(𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) |
6 | 5 | simplbi 501 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) |
7 | 6 | simpld 498 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 Basecbs 16554 +gcplusg 16636 Grpcgrp 18182 GrpHom cghm 18435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-ghm 18436 |
This theorem is referenced by: ghmid 18444 ghminv 18445 ghmsub 18446 ghmmhm 18448 ghmmulg 18450 ghmrn 18451 resghm2 18455 resghm2b 18456 ghmco 18458 ghmpreima 18460 ghmeql 18461 ghmnsgima 18462 ghmnsgpreima 18463 ghmeqker 18465 ghmf1 18467 ghmf1o 18468 ghmpropd 18476 isgim 18482 giclcl 18492 lactghmga 18613 invghm 19035 ghmplusg 19047 f1ghm0to0 19576 kerf1ghm 19579 evl1addd 21073 evl1subd 21074 ghmcnp 22828 evlsaddval 39817 gicabl 40451 |
Copyright terms: Public domain | W3C validator |