MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmgrp1 Structured version   Visualization version   GIF version

Theorem ghmgrp1 18836
Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmgrp1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)

Proof of Theorem ghmgrp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2738 . . . 4 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2738 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2738 . . . 4 (+g𝑇) = (+g𝑇)
51, 2, 3, 4isghm 18834 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑦 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)(𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥)))))
65simplbi 498 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
76simpld 495 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577   GrpHom cghm 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-ghm 18832
This theorem is referenced by:  ghmid  18840  ghminv  18841  ghmsub  18842  ghmmhm  18844  ghmmulg  18846  ghmrn  18847  resghm2  18851  resghm2b  18852  ghmco  18854  ghmpreima  18856  ghmeql  18857  ghmnsgima  18858  ghmnsgpreima  18859  ghmeqker  18861  ghmf1  18863  ghmf1o  18864  ghmpropd  18872  isgim  18878  giclcl  18888  lactghmga  19013  invghm  19435  ghmplusg  19447  f1ghm0to0  19984  kerf1ghm  19987  evl1addd  21507  evl1subd  21508  ghmcnp  23266  evlsaddval  40277  gicabl  40924
  Copyright terms: Public domain W3C validator