![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmgrp1 | Structured version Visualization version GIF version |
Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
ghmgrp1 | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2825 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | eqid 2825 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2825 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | 1, 2, 3, 4 | isghm 18011 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑦 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)(𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) |
6 | 5 | simplbi 493 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) |
7 | 6 | simpld 490 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ⟶wf 6119 ‘cfv 6123 (class class class)co 6905 Basecbs 16222 +gcplusg 16305 Grpcgrp 17776 GrpHom cghm 18008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-ghm 18009 |
This theorem is referenced by: ghmid 18017 ghminv 18018 ghmsub 18019 ghmmhm 18021 ghmmulg 18023 ghmrn 18024 resghm2 18028 resghm2b 18029 ghmco 18031 ghmpreima 18033 ghmeql 18034 ghmnsgima 18035 ghmnsgpreima 18036 ghmeqker 18038 ghmf1 18040 ghmf1o 18041 ghmpropd 18049 isgim 18055 giclcl 18065 lactghmga 18174 invghm 18592 ghmplusg 18602 evl1addd 20065 evl1subd 20066 ghmcnp 22288 gicabl 38505 |
Copyright terms: Public domain | W3C validator |