|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ghmgrp1 | Structured version Visualization version GIF version | ||
| Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| ghmgrp1 | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2736 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | eqid 2736 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2736 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 19234 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑦 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)(𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) | 
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) | 
| 7 | 6 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 Grpcgrp 18952 GrpHom cghm 19231 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-map 8869 df-ghm 19232 | 
| This theorem is referenced by: ghmid 19241 ghminv 19242 ghmsub 19243 ghmmhm 19245 ghmmulg 19247 ghmrn 19248 resghm2 19252 resghm2b 19253 ghmco 19255 ghmpreima 19257 ghmeql 19258 ghmnsgima 19259 ghmnsgpreima 19260 ghmeqker 19262 f1ghm0to0 19264 ghmf1 19265 kerf1ghm 19266 ghmf1o 19267 ghmpropd 19275 isgim 19281 giclcl 19292 ghmqusnsglem1 19299 ghmqusnsglem2 19300 ghmqusnsg 19301 ghmquskerlem1 19302 ghmquskerlem2 19304 ghmquskerlem3 19305 ghmqusker 19306 lactghmga 19424 invghm 19852 ghmplusg 19865 evl1addd 22346 evl1subd 22347 ghmcnp 24124 evlsaddval 42583 evladdval 42590 gicabl 43116 | 
| Copyright terms: Public domain | W3C validator |