| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gimf1o | Structured version Visualization version GIF version | ||
| Description: An isomorphism of groups is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| isgim.b | ⊢ 𝐵 = (Base‘𝑅) |
| isgim.c | ⊢ 𝐶 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| gimf1o | ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgim.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | isgim.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
| 3 | 1, 2 | isgim 19178 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) |
| 4 | 3 | simprbi 496 | 1 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 GrpHom cghm 19128 GrpIso cgim 19173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-map 8760 df-ghm 19129 df-gim 19175 |
| This theorem is referenced by: subggim 19182 gim0to0 19185 gicen 19194 gicsubgen 19195 giccyg 19816 abliso 33026 lmhmqusker 33391 rhmqusker 33400 aks6d1c6lem5 42293 gicabl 43219 |
| Copyright terms: Public domain | W3C validator |