|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > gimco | Structured version Visualization version GIF version | ||
| Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) | 
| Ref | Expression | 
|---|---|
| gimco | ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isgim2 19283 | . . 3 ⊢ (𝐹 ∈ (𝑇 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇))) | |
| 2 | isgim2 19283 | . . 3 ⊢ (𝐺 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) | |
| 3 | ghmco 19254 | . . . . 5 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | |
| 4 | cnvco 5896 | . . . . . 6 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
| 5 | ghmco 19254 | . . . . . . 7 ⊢ ((◡𝐺 ∈ (𝑇 GrpHom 𝑆) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇)) → (◡𝐺 ∘ ◡𝐹) ∈ (𝑈 GrpHom 𝑆)) | |
| 6 | 5 | ancoms 458 | . . . . . 6 ⊢ ((◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆)) → (◡𝐺 ∘ ◡𝐹) ∈ (𝑈 GrpHom 𝑆)) | 
| 7 | 4, 6 | eqeltrid 2845 | . . . . 5 ⊢ ((◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆)) → ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆)) | 
| 8 | 3, 7 | anim12i 613 | . . . 4 ⊢ (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) | 
| 9 | 8 | an4s 660 | . . 3 ⊢ (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇)) ∧ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) | 
| 10 | 1, 2, 9 | syl2anb 598 | . 2 ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) | 
| 11 | isgim2 19283 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈) ↔ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) | |
| 12 | 10, 11 | sylibr 234 | 1 ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ◡ccnv 5684 ∘ ccom 5689 (class class class)co 7431 GrpHom cghm 19230 GrpIso cgim 19275 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-ghm 19231 df-gim 19277 | 
| This theorem is referenced by: gictr 19294 | 
| Copyright terms: Public domain | W3C validator |