![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gimco | Structured version Visualization version GIF version |
Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
gimco | ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgim2 19218 | . . 3 ⊢ (𝐹 ∈ (𝑇 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇))) | |
2 | isgim2 19218 | . . 3 ⊢ (𝐺 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) | |
3 | ghmco 19189 | . . . . 5 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | |
4 | cnvco 5888 | . . . . . 6 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
5 | ghmco 19189 | . . . . . . 7 ⊢ ((◡𝐺 ∈ (𝑇 GrpHom 𝑆) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇)) → (◡𝐺 ∘ ◡𝐹) ∈ (𝑈 GrpHom 𝑆)) | |
6 | 5 | ancoms 458 | . . . . . 6 ⊢ ((◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆)) → (◡𝐺 ∘ ◡𝐹) ∈ (𝑈 GrpHom 𝑆)) |
7 | 4, 6 | eqeltrid 2833 | . . . . 5 ⊢ ((◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆)) → ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆)) |
8 | 3, 7 | anim12i 612 | . . . 4 ⊢ (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) |
9 | 8 | an4s 659 | . . 3 ⊢ (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇)) ∧ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) |
10 | 1, 2, 9 | syl2anb 597 | . 2 ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) |
11 | isgim2 19218 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈) ↔ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) | |
12 | 10, 11 | sylibr 233 | 1 ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ◡ccnv 5677 ∘ ccom 5682 (class class class)co 7420 GrpHom cghm 19166 GrpIso cgim 19210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-map 8846 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-grp 18892 df-ghm 19167 df-gim 19212 |
This theorem is referenced by: gictr 19229 |
Copyright terms: Public domain | W3C validator |