MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimco Structured version   Visualization version   GIF version

Theorem gimco 19180
Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gimco ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpIso 𝑈))

Proof of Theorem gimco
StepHypRef Expression
1 isgim2 19177 . . 3 (𝐹 ∈ (𝑇 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐹 ∈ (𝑈 GrpHom 𝑇)))
2 isgim2 19177 . . 3 (𝐺 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆)))
3 ghmco 19148 . . . . 5 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
4 cnvco 5824 . . . . . 6 (𝐹𝐺) = (𝐺𝐹)
5 ghmco 19148 . . . . . . 7 ((𝐺 ∈ (𝑇 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑈 GrpHom 𝑇)) → (𝐺𝐹) ∈ (𝑈 GrpHom 𝑆))
65ancoms 458 . . . . . 6 ((𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆)) → (𝐺𝐹) ∈ (𝑈 GrpHom 𝑆))
74, 6eqeltrid 2835 . . . . 5 ((𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆)) → (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆))
83, 7anim12i 613 . . . 4 (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
98an4s 660 . . 3 (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐹 ∈ (𝑈 GrpHom 𝑇)) ∧ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
101, 2, 9syl2anb 598 . 2 ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
11 isgim2 19177 . 2 ((𝐹𝐺) ∈ (𝑆 GrpIso 𝑈) ↔ ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
1210, 11sylibr 234 1 ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpIso 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  ccnv 5613  ccom 5618  (class class class)co 7346   GrpHom cghm 19124   GrpIso cgim 19169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-ghm 19125  df-gim 19171
This theorem is referenced by:  gictr  19188
  Copyright terms: Public domain W3C validator