Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gimco | Structured version Visualization version GIF version |
Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
gimco | ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgim2 18486 | . . 3 ⊢ (𝐹 ∈ (𝑇 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇))) | |
2 | isgim2 18486 | . . 3 ⊢ (𝐺 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) | |
3 | ghmco 18459 | . . . . 5 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | |
4 | cnvco 5731 | . . . . . 6 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
5 | ghmco 18459 | . . . . . . 7 ⊢ ((◡𝐺 ∈ (𝑇 GrpHom 𝑆) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇)) → (◡𝐺 ∘ ◡𝐹) ∈ (𝑈 GrpHom 𝑆)) | |
6 | 5 | ancoms 462 | . . . . . 6 ⊢ ((◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆)) → (◡𝐺 ∘ ◡𝐹) ∈ (𝑈 GrpHom 𝑆)) |
7 | 4, 6 | eqeltrid 2856 | . . . . 5 ⊢ ((◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆)) → ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆)) |
8 | 3, 7 | anim12i 615 | . . . 4 ⊢ (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) |
9 | 8 | an4s 659 | . . 3 ⊢ (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇)) ∧ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) |
10 | 1, 2, 9 | syl2anb 600 | . 2 ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) |
11 | isgim2 18486 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈) ↔ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) | |
12 | 10, 11 | sylibr 237 | 1 ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 ◡ccnv 5527 ∘ ccom 5532 (class class class)co 7156 GrpHom cghm 18436 GrpIso cgim 18478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-map 8424 df-0g 16787 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-mhm 18036 df-grp 18186 df-ghm 18437 df-gim 18480 |
This theorem is referenced by: gictr 18496 |
Copyright terms: Public domain | W3C validator |