MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimco Structured version   Visualization version   GIF version

Theorem gimco 19147
Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gimco ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpIso 𝑈))

Proof of Theorem gimco
StepHypRef Expression
1 isgim2 19144 . . 3 (𝐹 ∈ (𝑇 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐹 ∈ (𝑈 GrpHom 𝑇)))
2 isgim2 19144 . . 3 (𝐺 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆)))
3 ghmco 19115 . . . . 5 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
4 cnvco 5828 . . . . . 6 (𝐹𝐺) = (𝐺𝐹)
5 ghmco 19115 . . . . . . 7 ((𝐺 ∈ (𝑇 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑈 GrpHom 𝑇)) → (𝐺𝐹) ∈ (𝑈 GrpHom 𝑆))
65ancoms 458 . . . . . 6 ((𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆)) → (𝐺𝐹) ∈ (𝑈 GrpHom 𝑆))
74, 6eqeltrid 2832 . . . . 5 ((𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆)) → (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆))
83, 7anim12i 613 . . . 4 (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
98an4s 660 . . 3 (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐹 ∈ (𝑈 GrpHom 𝑇)) ∧ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
101, 2, 9syl2anb 598 . 2 ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
11 isgim2 19144 . 2 ((𝐹𝐺) ∈ (𝑆 GrpIso 𝑈) ↔ ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
1210, 11sylibr 234 1 ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpIso 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  ccnv 5618  ccom 5623  (class class class)co 7349   GrpHom cghm 19091   GrpIso cgim 19136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-ghm 19092  df-gim 19138
This theorem is referenced by:  gictr  19155
  Copyright terms: Public domain W3C validator