MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimco Structured version   Visualization version   GIF version

Theorem gimco 18061
Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gimco ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpIso 𝑈))

Proof of Theorem gimco
StepHypRef Expression
1 isgim2 18058 . . 3 (𝐹 ∈ (𝑇 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐹 ∈ (𝑈 GrpHom 𝑇)))
2 isgim2 18058 . . 3 (𝐺 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆)))
3 ghmco 18031 . . . . 5 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
4 cnvco 5540 . . . . . 6 (𝐹𝐺) = (𝐺𝐹)
5 ghmco 18031 . . . . . . 7 ((𝐺 ∈ (𝑇 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑈 GrpHom 𝑇)) → (𝐺𝐹) ∈ (𝑈 GrpHom 𝑆))
65ancoms 452 . . . . . 6 ((𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆)) → (𝐺𝐹) ∈ (𝑈 GrpHom 𝑆))
74, 6syl5eqel 2910 . . . . 5 ((𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆)) → (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆))
83, 7anim12i 608 . . . 4 (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
98an4s 652 . . 3 (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐹 ∈ (𝑈 GrpHom 𝑇)) ∧ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
101, 2, 9syl2anb 593 . 2 ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
11 isgim2 18058 . 2 ((𝐹𝐺) ∈ (𝑆 GrpIso 𝑈) ↔ ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
1210, 11sylibr 226 1 ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpIso 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2166  ccnv 5341  ccom 5346  (class class class)co 6905   GrpHom cghm 18008   GrpIso cgim 18050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-map 8124  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-grp 17779  df-ghm 18009  df-gim 18052
This theorem is referenced by:  gictr  18068
  Copyright terms: Public domain W3C validator