![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gimco | Structured version Visualization version GIF version |
Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
gimco | ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgim2 18058 | . . 3 ⊢ (𝐹 ∈ (𝑇 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇))) | |
2 | isgim2 18058 | . . 3 ⊢ (𝐺 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) | |
3 | ghmco 18031 | . . . . 5 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | |
4 | cnvco 5540 | . . . . . 6 ⊢ ◡(𝐹 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐹) | |
5 | ghmco 18031 | . . . . . . 7 ⊢ ((◡𝐺 ∈ (𝑇 GrpHom 𝑆) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇)) → (◡𝐺 ∘ ◡𝐹) ∈ (𝑈 GrpHom 𝑆)) | |
6 | 5 | ancoms 452 | . . . . . 6 ⊢ ((◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆)) → (◡𝐺 ∘ ◡𝐹) ∈ (𝑈 GrpHom 𝑆)) |
7 | 4, 6 | syl5eqel 2910 | . . . . 5 ⊢ ((◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆)) → ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆)) |
8 | 3, 7 | anim12i 608 | . . . 4 ⊢ (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (◡𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) |
9 | 8 | an4s 652 | . . 3 ⊢ (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ ◡𝐹 ∈ (𝑈 GrpHom 𝑇)) ∧ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ ◡𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) |
10 | 1, 2, 9 | syl2anb 593 | . 2 ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) |
11 | isgim2 18058 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈) ↔ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ ◡(𝐹 ∘ 𝐺) ∈ (𝑈 GrpHom 𝑆))) | |
12 | 10, 11 | sylibr 226 | 1 ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 ◡ccnv 5341 ∘ ccom 5346 (class class class)co 6905 GrpHom cghm 18008 GrpIso cgim 18050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-map 8124 df-0g 16455 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-mhm 17688 df-grp 17779 df-ghm 18009 df-gim 18052 |
This theorem is referenced by: gictr 18068 |
Copyright terms: Public domain | W3C validator |