MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimco Structured version   Visualization version   GIF version

Theorem gimco 19286
Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gimco ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpIso 𝑈))

Proof of Theorem gimco
StepHypRef Expression
1 isgim2 19283 . . 3 (𝐹 ∈ (𝑇 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐹 ∈ (𝑈 GrpHom 𝑇)))
2 isgim2 19283 . . 3 (𝐺 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆)))
3 ghmco 19254 . . . . 5 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
4 cnvco 5896 . . . . . 6 (𝐹𝐺) = (𝐺𝐹)
5 ghmco 19254 . . . . . . 7 ((𝐺 ∈ (𝑇 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑈 GrpHom 𝑇)) → (𝐺𝐹) ∈ (𝑈 GrpHom 𝑆))
65ancoms 458 . . . . . 6 ((𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆)) → (𝐺𝐹) ∈ (𝑈 GrpHom 𝑆))
74, 6eqeltrid 2845 . . . . 5 ((𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆)) → (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆))
83, 7anim12i 613 . . . 4 (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝐹 ∈ (𝑈 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
98an4s 660 . . 3 (((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐹 ∈ (𝑈 GrpHom 𝑇)) ∧ (𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑇 GrpHom 𝑆))) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
101, 2, 9syl2anb 598 . 2 ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
11 isgim2 19283 . 2 ((𝐹𝐺) ∈ (𝑆 GrpIso 𝑈) ↔ ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ (𝑈 GrpHom 𝑆)))
1210, 11sylibr 234 1 ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpIso 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  ccnv 5684  ccom 5689  (class class class)co 7431   GrpHom cghm 19230   GrpIso cgim 19275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-ghm 19231  df-gim 19277
This theorem is referenced by:  gictr  19294
  Copyright terms: Public domain W3C validator