Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ghm0to0 | Structured version Visualization version GIF version |
Description: If a group homomorphism 𝐹 is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.) |
Ref | Expression |
---|---|
f1ghm0to0.a | ⊢ 𝐴 = (Base‘𝑅) |
f1ghm0to0.b | ⊢ 𝐵 = (Base‘𝑆) |
f1ghm0to0.n | ⊢ 𝑁 = (0g‘𝑆) |
f1ghm0to0.1 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
f1ghm0to0 | ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ghm0to0.1 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
2 | f1ghm0to0.n | . . . . . 6 ⊢ 𝑁 = (0g‘𝑆) | |
3 | 1, 2 | ghmid 18628 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘ 0 ) = 𝑁) |
4 | 3 | 3ad2ant1 1135 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘ 0 ) = 𝑁) |
5 | 4 | eqeq2d 2748 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = (𝐹‘ 0 ) ↔ (𝐹‘𝑋) = 𝑁)) |
6 | simp2 1139 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝐹:𝐴–1-1→𝐵) | |
7 | simp3 1140 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
8 | ghmgrp1 18624 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp) | |
9 | f1ghm0to0.a | . . . . . . 7 ⊢ 𝐴 = (Base‘𝑅) | |
10 | 9, 1 | grpidcl 18395 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐴) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 0 ∈ 𝐴) |
12 | 11 | 3ad2ant1 1135 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 0 ∈ 𝐴) |
13 | f1veqaeq 7069 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 0 ∈ 𝐴)) → ((𝐹‘𝑋) = (𝐹‘ 0 ) → 𝑋 = 0 )) | |
14 | 6, 7, 12, 13 | syl12anc 837 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = (𝐹‘ 0 ) → 𝑋 = 0 )) |
15 | 5, 14 | sylbird 263 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 )) |
16 | fveq2 6717 | . . . 4 ⊢ (𝑋 = 0 → (𝐹‘𝑋) = (𝐹‘ 0 )) | |
17 | 16, 4 | sylan9eqr 2800 | . . 3 ⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝐹‘𝑋) = 𝑁) |
18 | 17 | ex 416 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝑋 = 0 → (𝐹‘𝑋) = 𝑁)) |
19 | 15, 18 | impbid 215 | 1 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 –1-1→wf1 6377 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 0gc0g 16944 Grpcgrp 18365 GrpHom cghm 18619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-ghm 18620 |
This theorem is referenced by: gim0to0 19762 kerf1ghm 19763 |
Copyright terms: Public domain | W3C validator |