MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ghm0to0 Structured version   Visualization version   GIF version

Theorem f1ghm0to0 19285
Description: If a group homomorphism 𝐹 is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
Hypotheses
Ref Expression
f1ghm0to0.a 𝐴 = (Base‘𝑅)
f1ghm0to0.b 𝐵 = (Base‘𝑆)
f1ghm0to0.n 𝑁 = (0g𝑅)
f1ghm0to0.0 0 = (0g𝑆)
Assertion
Ref Expression
f1ghm0to0 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 0𝑋 = 𝑁))

Proof of Theorem f1ghm0to0
StepHypRef Expression
1 f1ghm0to0.n . . . . . 6 𝑁 = (0g𝑅)
2 f1ghm0to0.0 . . . . . 6 0 = (0g𝑆)
31, 2ghmid 19262 . . . . 5 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹𝑁) = 0 )
433ad2ant1 1133 . . . 4 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → (𝐹𝑁) = 0 )
54eqeq2d 2751 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = (𝐹𝑁) ↔ (𝐹𝑋) = 0 ))
6 simp2 1137 . . . 4 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → 𝐹:𝐴1-1𝐵)
7 simp3 1138 . . . 4 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → 𝑋𝐴)
8 ghmgrp1 19258 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp)
9 f1ghm0to0.a . . . . . . 7 𝐴 = (Base‘𝑅)
109, 1grpidcl 19005 . . . . . 6 (𝑅 ∈ Grp → 𝑁𝐴)
118, 10syl 17 . . . . 5 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑁𝐴)
12113ad2ant1 1133 . . . 4 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → 𝑁𝐴)
13 f1veqaeq 7294 . . . 4 ((𝐹:𝐴1-1𝐵 ∧ (𝑋𝐴𝑁𝐴)) → ((𝐹𝑋) = (𝐹𝑁) → 𝑋 = 𝑁))
146, 7, 12, 13syl12anc 836 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = (𝐹𝑁) → 𝑋 = 𝑁))
155, 14sylbird 260 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 0𝑋 = 𝑁))
16 fveq2 6920 . . . 4 (𝑋 = 𝑁 → (𝐹𝑋) = (𝐹𝑁))
1716, 4sylan9eqr 2802 . . 3 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑋 = 𝑁) → (𝐹𝑋) = 0 )
1817ex 412 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → (𝑋 = 𝑁 → (𝐹𝑋) = 0 ))
1915, 18impbid 212 1 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 0𝑋 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  1-1wf1 6570  cfv 6573  (class class class)co 7448  Basecbs 17258  0gc0g 17499  Grpcgrp 18973   GrpHom cghm 19252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ghm 19253
This theorem is referenced by:  ghmf1  19286  kerf1ghm  19287  gim0to0  19309
  Copyright terms: Public domain W3C validator