![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ghm0to0 | Structured version Visualization version GIF version |
Description: If a group homomorphism 𝐹 is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.) |
Ref | Expression |
---|---|
f1ghm0to0.a | ⊢ 𝐴 = (Base‘𝑅) |
f1ghm0to0.b | ⊢ 𝐵 = (Base‘𝑆) |
f1ghm0to0.n | ⊢ 𝑁 = (0g‘𝑆) |
f1ghm0to0.1 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
f1ghm0to0 | ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ghm0to0.1 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
2 | f1ghm0to0.n | . . . . . 6 ⊢ 𝑁 = (0g‘𝑆) | |
3 | 1, 2 | ghmid 19083 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘ 0 ) = 𝑁) |
4 | 3 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘ 0 ) = 𝑁) |
5 | 4 | eqeq2d 2744 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = (𝐹‘ 0 ) ↔ (𝐹‘𝑋) = 𝑁)) |
6 | simp2 1138 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝐹:𝐴–1-1→𝐵) | |
7 | simp3 1139 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
8 | ghmgrp1 19079 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp) | |
9 | f1ghm0to0.a | . . . . . . 7 ⊢ 𝐴 = (Base‘𝑅) | |
10 | 9, 1 | grpidcl 18837 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐴) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 0 ∈ 𝐴) |
12 | 11 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → 0 ∈ 𝐴) |
13 | f1veqaeq 7243 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 0 ∈ 𝐴)) → ((𝐹‘𝑋) = (𝐹‘ 0 ) → 𝑋 = 0 )) | |
14 | 6, 7, 12, 13 | syl12anc 836 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = (𝐹‘ 0 ) → 𝑋 = 0 )) |
15 | 5, 14 | sylbird 260 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 )) |
16 | fveq2 6881 | . . . 4 ⊢ (𝑋 = 0 → (𝐹‘𝑋) = (𝐹‘ 0 )) | |
17 | 16, 4 | sylan9eqr 2795 | . . 3 ⊢ (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝐹‘𝑋) = 𝑁) |
18 | 17 | ex 414 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝑋 = 0 → (𝐹‘𝑋) = 𝑁)) |
19 | 15, 18 | impbid 211 | 1 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 –1-1→wf1 6532 ‘cfv 6535 (class class class)co 7396 Basecbs 17131 0gc0g 17372 Grpcgrp 18806 GrpHom cghm 19074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-0g 17374 df-mgm 18548 df-sgrp 18597 df-mnd 18613 df-grp 18809 df-ghm 19075 |
This theorem is referenced by: gim0to0 20259 kerf1ghm 20260 |
Copyright terms: Public domain | W3C validator |