MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvadd Structured version   Visualization version   GIF version

Theorem grpinvadd 18950
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.)
Hypotheses
Ref Expression
grpinvadd.b 𝐵 = (Base‘𝐺)
grpinvadd.p + = (+g𝐺)
grpinvadd.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvadd ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))

Proof of Theorem grpinvadd
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
2 simp2 1137 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1138 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 grpinvadd.b . . . . . . 7 𝐵 = (Base‘𝐺)
5 grpinvadd.n . . . . . . 7 𝑁 = (invg𝐺)
64, 5grpinvcl 18919 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
763adant2 1131 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
84, 5grpinvcl 18919 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
983adant3 1132 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑋) ∈ 𝐵)
10 grpinvadd.p . . . . . 6 + = (+g𝐺)
114, 10grpcl 18873 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁𝑌) ∈ 𝐵 ∧ (𝑁𝑋) ∈ 𝐵) → ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵)
121, 7, 9, 11syl3anc 1373 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵)
134, 10grpass 18874 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵 ∧ ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵)) → ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (𝑋 + (𝑌 + ((𝑁𝑌) + (𝑁𝑋)))))
141, 2, 3, 12, 13syl13anc 1374 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (𝑋 + (𝑌 + ((𝑁𝑌) + (𝑁𝑋)))))
15 eqid 2729 . . . . . . . 8 (0g𝐺) = (0g𝐺)
164, 10, 15, 5grprinv 18922 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑌 + (𝑁𝑌)) = (0g𝐺))
17163adant2 1131 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + (𝑁𝑌)) = (0g𝐺))
1817oveq1d 7402 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑌 + (𝑁𝑌)) + (𝑁𝑋)) = ((0g𝐺) + (𝑁𝑋)))
194, 10grpass 18874 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑌𝐵 ∧ (𝑁𝑌) ∈ 𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → ((𝑌 + (𝑁𝑌)) + (𝑁𝑋)) = (𝑌 + ((𝑁𝑌) + (𝑁𝑋))))
201, 3, 7, 9, 19syl13anc 1374 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑌 + (𝑁𝑌)) + (𝑁𝑋)) = (𝑌 + ((𝑁𝑌) + (𝑁𝑋))))
214, 10, 15grplid 18899 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ((0g𝐺) + (𝑁𝑋)) = (𝑁𝑋))
221, 9, 21syl2anc 584 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((0g𝐺) + (𝑁𝑋)) = (𝑁𝑋))
2318, 20, 223eqtr3d 2772 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + ((𝑁𝑌) + (𝑁𝑋))) = (𝑁𝑋))
2423oveq2d 7403 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑌 + ((𝑁𝑌) + (𝑁𝑋)))) = (𝑋 + (𝑁𝑋)))
254, 10, 15, 5grprinv 18922 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
26253adant3 1132 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
2714, 24, 263eqtrd 2768 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (0g𝐺))
284, 10grpcl 18873 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
294, 10, 15, 5grpinvid1 18923 . . 3 ((𝐺 ∈ Grp ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵) → ((𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)) ↔ ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (0g𝐺)))
301, 28, 12, 29syl3anc 1373 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)) ↔ ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (0g𝐺)))
3127, 30mpbird 257 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869
This theorem is referenced by:  grpinvsub  18954  mulgaddcomlem  19029  mulginvcom  19031  mulgdir  19038  eqger  19110  eqgcpbl  19114  invoppggim  19292  sylow2blem1  19550  lsmsubg  19584  ablinvadd  19737  ablsub2inv  19738  invghm  19763  rdivmuldivd  20322  dvrcan5  33187
  Copyright terms: Public domain W3C validator