MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvadd Structured version   Visualization version   GIF version

Theorem grpinvadd 18169
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.)
Hypotheses
Ref Expression
grpinvadd.b 𝐵 = (Base‘𝐺)
grpinvadd.p + = (+g𝐺)
grpinvadd.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvadd ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))

Proof of Theorem grpinvadd
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
2 simp2 1134 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1135 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 grpinvadd.b . . . . . . 7 𝐵 = (Base‘𝐺)
5 grpinvadd.n . . . . . . 7 𝑁 = (invg𝐺)
64, 5grpinvcl 18143 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
763adant2 1128 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
84, 5grpinvcl 18143 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
983adant3 1129 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑋) ∈ 𝐵)
10 grpinvadd.p . . . . . 6 + = (+g𝐺)
114, 10grpcl 18103 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁𝑌) ∈ 𝐵 ∧ (𝑁𝑋) ∈ 𝐵) → ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵)
121, 7, 9, 11syl3anc 1368 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵)
134, 10grpass 18104 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵 ∧ ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵)) → ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (𝑋 + (𝑌 + ((𝑁𝑌) + (𝑁𝑋)))))
141, 2, 3, 12, 13syl13anc 1369 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (𝑋 + (𝑌 + ((𝑁𝑌) + (𝑁𝑋)))))
15 eqid 2798 . . . . . . . 8 (0g𝐺) = (0g𝐺)
164, 10, 15, 5grprinv 18145 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑌 + (𝑁𝑌)) = (0g𝐺))
17163adant2 1128 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + (𝑁𝑌)) = (0g𝐺))
1817oveq1d 7150 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑌 + (𝑁𝑌)) + (𝑁𝑋)) = ((0g𝐺) + (𝑁𝑋)))
194, 10grpass 18104 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑌𝐵 ∧ (𝑁𝑌) ∈ 𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → ((𝑌 + (𝑁𝑌)) + (𝑁𝑋)) = (𝑌 + ((𝑁𝑌) + (𝑁𝑋))))
201, 3, 7, 9, 19syl13anc 1369 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑌 + (𝑁𝑌)) + (𝑁𝑋)) = (𝑌 + ((𝑁𝑌) + (𝑁𝑋))))
214, 10, 15grplid 18125 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ((0g𝐺) + (𝑁𝑋)) = (𝑁𝑋))
221, 9, 21syl2anc 587 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((0g𝐺) + (𝑁𝑋)) = (𝑁𝑋))
2318, 20, 223eqtr3d 2841 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + ((𝑁𝑌) + (𝑁𝑋))) = (𝑁𝑋))
2423oveq2d 7151 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑌 + ((𝑁𝑌) + (𝑁𝑋)))) = (𝑋 + (𝑁𝑋)))
254, 10, 15, 5grprinv 18145 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
26253adant3 1129 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
2714, 24, 263eqtrd 2837 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (0g𝐺))
284, 10grpcl 18103 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
294, 10, 15, 5grpinvid1 18146 . . 3 ((𝐺 ∈ Grp ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵) → ((𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)) ↔ ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (0g𝐺)))
301, 28, 12, 29syl3anc 1368 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)) ↔ ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (0g𝐺)))
3127, 30mpbird 260 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Grpcgrp 18095  invgcminusg 18096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-riota 7093  df-ov 7138  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099
This theorem is referenced by:  grpinvsub  18173  mulgaddcomlem  18242  mulginvcom  18244  mulgdir  18251  eqger  18322  eqgcpbl  18326  invoppggim  18480  sylow2blem1  18737  lsmsubg  18771  ablinvadd  18923  ablsub2inv  18924  invghm  18947  rdivmuldivd  30913  dvrcan5  30915
  Copyright terms: Public domain W3C validator