Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpokerinj Structured version   Visualization version   GIF version

Theorem grpokerinj 36051
Description: A group homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
grpkerinj.1 𝑋 = ran 𝐺
grpkerinj.2 𝑊 = (GId‘𝐺)
grpkerinj.3 𝑌 = ran 𝐻
grpkerinj.4 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
grpokerinj ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑈}) = {𝑊}))

Proof of Theorem grpokerinj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpkerinj.2 . . . . . . . . 9 𝑊 = (GId‘𝐺)
2 grpkerinj.4 . . . . . . . . 9 𝑈 = (GId‘𝐻)
31, 2ghomidOLD 36047 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑊) = 𝑈)
43sneqd 4573 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → {(𝐹𝑊)} = {𝑈})
5 grpkerinj.1 . . . . . . . . . 10 𝑋 = ran 𝐺
6 grpkerinj.3 . . . . . . . . . 10 𝑌 = ran 𝐻
75, 6ghomf 36048 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:𝑋𝑌)
87ffnd 6601 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹 Fn 𝑋)
95, 1grpoidcl 28876 . . . . . . . . 9 (𝐺 ∈ GrpOp → 𝑊𝑋)
1093ad2ant1 1132 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝑊𝑋)
11 fnsnfv 6847 . . . . . . . 8 ((𝐹 Fn 𝑋𝑊𝑋) → {(𝐹𝑊)} = (𝐹 “ {𝑊}))
128, 10, 11syl2anc 584 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → {(𝐹𝑊)} = (𝐹 “ {𝑊}))
134, 12eqtr3d 2780 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → {𝑈} = (𝐹 “ {𝑊}))
1413imaeq2d 5969 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹 “ {𝑈}) = (𝐹 “ (𝐹 “ {𝑊})))
1514adantl 482 . . . 4 ((𝐹:𝑋1-1𝑌 ∧ (𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻))) → (𝐹 “ {𝑈}) = (𝐹 “ (𝐹 “ {𝑊})))
169snssd 4742 . . . . . 6 (𝐺 ∈ GrpOp → {𝑊} ⊆ 𝑋)
17163ad2ant1 1132 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → {𝑊} ⊆ 𝑋)
18 f1imacnv 6732 . . . . 5 ((𝐹:𝑋1-1𝑌 ∧ {𝑊} ⊆ 𝑋) → (𝐹 “ (𝐹 “ {𝑊})) = {𝑊})
1917, 18sylan2 593 . . . 4 ((𝐹:𝑋1-1𝑌 ∧ (𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻))) → (𝐹 “ (𝐹 “ {𝑊})) = {𝑊})
2015, 19eqtrd 2778 . . 3 ((𝐹:𝑋1-1𝑌 ∧ (𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻))) → (𝐹 “ {𝑈}) = {𝑊})
2120expcom 414 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋1-1𝑌 → (𝐹 “ {𝑈}) = {𝑊}))
227adantr 481 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) → 𝐹:𝑋𝑌)
23 simpl2 1191 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐻 ∈ GrpOp)
247ffvelrnda 6961 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ 𝑌)
2524adantrr 714 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹𝑥) ∈ 𝑌)
267ffvelrnda 6961 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ 𝑌)
2726adantrl 713 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹𝑦) ∈ 𝑌)
28 eqid 2738 . . . . . . . . 9 ( /𝑔𝐻) = ( /𝑔𝐻)
296, 2, 28grpoeqdivid 36039 . . . . . . . 8 ((𝐻 ∈ GrpOp ∧ (𝐹𝑥) ∈ 𝑌 ∧ (𝐹𝑦) ∈ 𝑌) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈))
3023, 25, 27, 29syl3anc 1370 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈))
3130adantlr 712 . . . . . 6 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈))
32 eqid 2738 . . . . . . . . . 10 ( /𝑔𝐺) = ( /𝑔𝐺)
335, 32, 28ghomdiv 36050 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥( /𝑔𝐺)𝑦)) = ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)))
3433adantlr 712 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥( /𝑔𝐺)𝑦)) = ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)))
3534eqeq1d 2740 . . . . . . 7 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) = 𝑈 ↔ ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈))
362fvexi 6788 . . . . . . . . . 10 𝑈 ∈ V
3736snid 4597 . . . . . . . . 9 𝑈 ∈ {𝑈}
38 eleq1 2826 . . . . . . . . 9 ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) = 𝑈 → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ 𝑈 ∈ {𝑈}))
3937, 38mpbiri 257 . . . . . . . 8 ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) = 𝑈 → (𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈})
407ffund 6604 . . . . . . . . . . . . 13 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → Fun 𝐹)
4140adantr 481 . . . . . . . . . . . 12 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → Fun 𝐹)
425, 32grpodivcl 28901 . . . . . . . . . . . . . . 15 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → (𝑥( /𝑔𝐺)𝑦) ∈ 𝑋)
43423expb 1119 . . . . . . . . . . . . . 14 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋𝑦𝑋)) → (𝑥( /𝑔𝐺)𝑦) ∈ 𝑋)
44433ad2antl1 1184 . . . . . . . . . . . . 13 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥( /𝑔𝐺)𝑦) ∈ 𝑋)
457fdmd 6611 . . . . . . . . . . . . . 14 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → dom 𝐹 = 𝑋)
4645adantr 481 . . . . . . . . . . . . 13 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → dom 𝐹 = 𝑋)
4744, 46eleqtrrd 2842 . . . . . . . . . . . 12 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥( /𝑔𝐺)𝑦) ∈ dom 𝐹)
48 fvimacnv 6930 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ (𝑥( /𝑔𝐺)𝑦) ∈ dom 𝐹) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ (𝑥( /𝑔𝐺)𝑦) ∈ (𝐹 “ {𝑈})))
4941, 47, 48syl2anc 584 . . . . . . . . . . 11 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ (𝑥( /𝑔𝐺)𝑦) ∈ (𝐹 “ {𝑈})))
50 eleq2 2827 . . . . . . . . . . 11 ((𝐹 “ {𝑈}) = {𝑊} → ((𝑥( /𝑔𝐺)𝑦) ∈ (𝐹 “ {𝑈}) ↔ (𝑥( /𝑔𝐺)𝑦) ∈ {𝑊}))
5149, 50sylan9bb 510 . . . . . . . . . 10 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) ∧ (𝐹 “ {𝑈}) = {𝑊}) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ (𝑥( /𝑔𝐺)𝑦) ∈ {𝑊}))
5251an32s 649 . . . . . . . . 9 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ (𝑥( /𝑔𝐺)𝑦) ∈ {𝑊}))
53 elsni 4578 . . . . . . . . . . 11 ((𝑥( /𝑔𝐺)𝑦) ∈ {𝑊} → (𝑥( /𝑔𝐺)𝑦) = 𝑊)
545, 1, 32grpoeqdivid 36039 . . . . . . . . . . . . . 14 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → (𝑥 = 𝑦 ↔ (𝑥( /𝑔𝐺)𝑦) = 𝑊))
5554biimprd 247 . . . . . . . . . . . . 13 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → ((𝑥( /𝑔𝐺)𝑦) = 𝑊𝑥 = 𝑦))
56553expb 1119 . . . . . . . . . . . 12 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥( /𝑔𝐺)𝑦) = 𝑊𝑥 = 𝑦))
57563ad2antl1 1184 . . . . . . . . . . 11 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥( /𝑔𝐺)𝑦) = 𝑊𝑥 = 𝑦))
5853, 57syl5 34 . . . . . . . . . 10 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥( /𝑔𝐺)𝑦) ∈ {𝑊} → 𝑥 = 𝑦))
5958adantlr 712 . . . . . . . . 9 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥( /𝑔𝐺)𝑦) ∈ {𝑊} → 𝑥 = 𝑦))
6052, 59sylbid 239 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} → 𝑥 = 𝑦))
6139, 60syl5 34 . . . . . . 7 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) = 𝑈𝑥 = 𝑦))
6235, 61sylbird 259 . . . . . 6 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈𝑥 = 𝑦))
6331, 62sylbid 239 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6463ralrimivva 3123 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
65 dff13 7128 . . . 4 (𝐹:𝑋1-1𝑌 ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6622, 64, 65sylanbrc 583 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) → 𝐹:𝑋1-1𝑌)
6766ex 413 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹 “ {𝑈}) = {𝑊} → 𝐹:𝑋1-1𝑌))
6821, 67impbid 211 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑈}) = {𝑊}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887  {csn 4561  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  Fun wfun 6427   Fn wfn 6428  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  GrpOpcgr 28851  GIdcgi 28852   /𝑔 cgs 28854   GrpOpHom cghomOLD 36041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ghomOLD 36042
This theorem is referenced by:  rngokerinj  36133
  Copyright terms: Public domain W3C validator