Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpokerinj Structured version   Visualization version   GIF version

Theorem grpokerinj 37853
Description: A group homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
grpkerinj.1 𝑋 = ran 𝐺
grpkerinj.2 𝑊 = (GId‘𝐺)
grpkerinj.3 𝑌 = ran 𝐻
grpkerinj.4 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
grpokerinj ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑈}) = {𝑊}))

Proof of Theorem grpokerinj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpkerinj.2 . . . . . . . . 9 𝑊 = (GId‘𝐺)
2 grpkerinj.4 . . . . . . . . 9 𝑈 = (GId‘𝐻)
31, 2ghomidOLD 37849 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑊) = 𝑈)
43sneqd 4660 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → {(𝐹𝑊)} = {𝑈})
5 grpkerinj.1 . . . . . . . . . 10 𝑋 = ran 𝐺
6 grpkerinj.3 . . . . . . . . . 10 𝑌 = ran 𝐻
75, 6ghomf 37850 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:𝑋𝑌)
87ffnd 6748 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹 Fn 𝑋)
95, 1grpoidcl 30546 . . . . . . . . 9 (𝐺 ∈ GrpOp → 𝑊𝑋)
1093ad2ant1 1133 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝑊𝑋)
11 fnsnfv 7001 . . . . . . . 8 ((𝐹 Fn 𝑋𝑊𝑋) → {(𝐹𝑊)} = (𝐹 “ {𝑊}))
128, 10, 11syl2anc 583 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → {(𝐹𝑊)} = (𝐹 “ {𝑊}))
134, 12eqtr3d 2782 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → {𝑈} = (𝐹 “ {𝑊}))
1413imaeq2d 6089 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹 “ {𝑈}) = (𝐹 “ (𝐹 “ {𝑊})))
1514adantl 481 . . . 4 ((𝐹:𝑋1-1𝑌 ∧ (𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻))) → (𝐹 “ {𝑈}) = (𝐹 “ (𝐹 “ {𝑊})))
169snssd 4834 . . . . . 6 (𝐺 ∈ GrpOp → {𝑊} ⊆ 𝑋)
17163ad2ant1 1133 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → {𝑊} ⊆ 𝑋)
18 f1imacnv 6878 . . . . 5 ((𝐹:𝑋1-1𝑌 ∧ {𝑊} ⊆ 𝑋) → (𝐹 “ (𝐹 “ {𝑊})) = {𝑊})
1917, 18sylan2 592 . . . 4 ((𝐹:𝑋1-1𝑌 ∧ (𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻))) → (𝐹 “ (𝐹 “ {𝑊})) = {𝑊})
2015, 19eqtrd 2780 . . 3 ((𝐹:𝑋1-1𝑌 ∧ (𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻))) → (𝐹 “ {𝑈}) = {𝑊})
2120expcom 413 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋1-1𝑌 → (𝐹 “ {𝑈}) = {𝑊}))
227adantr 480 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) → 𝐹:𝑋𝑌)
23 simpl2 1192 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐻 ∈ GrpOp)
247ffvelcdmda 7118 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ 𝑌)
2524adantrr 716 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹𝑥) ∈ 𝑌)
267ffvelcdmda 7118 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ 𝑌)
2726adantrl 715 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹𝑦) ∈ 𝑌)
28 eqid 2740 . . . . . . . . 9 ( /𝑔𝐻) = ( /𝑔𝐻)
296, 2, 28grpoeqdivid 37841 . . . . . . . 8 ((𝐻 ∈ GrpOp ∧ (𝐹𝑥) ∈ 𝑌 ∧ (𝐹𝑦) ∈ 𝑌) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈))
3023, 25, 27, 29syl3anc 1371 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈))
3130adantlr 714 . . . . . 6 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈))
32 eqid 2740 . . . . . . . . . 10 ( /𝑔𝐺) = ( /𝑔𝐺)
335, 32, 28ghomdiv 37852 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥( /𝑔𝐺)𝑦)) = ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)))
3433adantlr 714 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥( /𝑔𝐺)𝑦)) = ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)))
3534eqeq1d 2742 . . . . . . 7 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) = 𝑈 ↔ ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈))
362fvexi 6934 . . . . . . . . . 10 𝑈 ∈ V
3736snid 4684 . . . . . . . . 9 𝑈 ∈ {𝑈}
38 eleq1 2832 . . . . . . . . 9 ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) = 𝑈 → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ 𝑈 ∈ {𝑈}))
3937, 38mpbiri 258 . . . . . . . 8 ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) = 𝑈 → (𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈})
407ffund 6751 . . . . . . . . . . . . 13 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → Fun 𝐹)
4140adantr 480 . . . . . . . . . . . 12 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → Fun 𝐹)
425, 32grpodivcl 30571 . . . . . . . . . . . . . . 15 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → (𝑥( /𝑔𝐺)𝑦) ∈ 𝑋)
43423expb 1120 . . . . . . . . . . . . . 14 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋𝑦𝑋)) → (𝑥( /𝑔𝐺)𝑦) ∈ 𝑋)
44433ad2antl1 1185 . . . . . . . . . . . . 13 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥( /𝑔𝐺)𝑦) ∈ 𝑋)
457fdmd 6757 . . . . . . . . . . . . . 14 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → dom 𝐹 = 𝑋)
4645adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → dom 𝐹 = 𝑋)
4744, 46eleqtrrd 2847 . . . . . . . . . . . 12 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥( /𝑔𝐺)𝑦) ∈ dom 𝐹)
48 fvimacnv 7086 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ (𝑥( /𝑔𝐺)𝑦) ∈ dom 𝐹) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ (𝑥( /𝑔𝐺)𝑦) ∈ (𝐹 “ {𝑈})))
4941, 47, 48syl2anc 583 . . . . . . . . . . 11 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ (𝑥( /𝑔𝐺)𝑦) ∈ (𝐹 “ {𝑈})))
50 eleq2 2833 . . . . . . . . . . 11 ((𝐹 “ {𝑈}) = {𝑊} → ((𝑥( /𝑔𝐺)𝑦) ∈ (𝐹 “ {𝑈}) ↔ (𝑥( /𝑔𝐺)𝑦) ∈ {𝑊}))
5149, 50sylan9bb 509 . . . . . . . . . 10 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) ∧ (𝐹 “ {𝑈}) = {𝑊}) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ (𝑥( /𝑔𝐺)𝑦) ∈ {𝑊}))
5251an32s 651 . . . . . . . . 9 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ (𝑥( /𝑔𝐺)𝑦) ∈ {𝑊}))
53 elsni 4665 . . . . . . . . . . 11 ((𝑥( /𝑔𝐺)𝑦) ∈ {𝑊} → (𝑥( /𝑔𝐺)𝑦) = 𝑊)
545, 1, 32grpoeqdivid 37841 . . . . . . . . . . . . . 14 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → (𝑥 = 𝑦 ↔ (𝑥( /𝑔𝐺)𝑦) = 𝑊))
5554biimprd 248 . . . . . . . . . . . . 13 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → ((𝑥( /𝑔𝐺)𝑦) = 𝑊𝑥 = 𝑦))
56553expb 1120 . . . . . . . . . . . 12 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥( /𝑔𝐺)𝑦) = 𝑊𝑥 = 𝑦))
57563ad2antl1 1185 . . . . . . . . . . 11 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥( /𝑔𝐺)𝑦) = 𝑊𝑥 = 𝑦))
5853, 57syl5 34 . . . . . . . . . 10 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥( /𝑔𝐺)𝑦) ∈ {𝑊} → 𝑥 = 𝑦))
5958adantlr 714 . . . . . . . . 9 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥( /𝑔𝐺)𝑦) ∈ {𝑊} → 𝑥 = 𝑦))
6052, 59sylbid 240 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} → 𝑥 = 𝑦))
6139, 60syl5 34 . . . . . . 7 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) = 𝑈𝑥 = 𝑦))
6235, 61sylbird 260 . . . . . 6 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈𝑥 = 𝑦))
6331, 62sylbid 240 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6463ralrimivva 3208 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
65 dff13 7292 . . . 4 (𝐹:𝑋1-1𝑌 ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6622, 64, 65sylanbrc 582 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) → 𝐹:𝑋1-1𝑌)
6766ex 412 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹 “ {𝑈}) = {𝑊} → 𝐹:𝑋1-1𝑌))
6821, 67impbid 212 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑈}) = {𝑊}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976  {csn 4648  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  GrpOpcgr 30521  GIdcgi 30522   /𝑔 cgs 30524   GrpOpHom cghomOLD 37843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ghomOLD 37844
This theorem is referenced by:  rngokerinj  37935
  Copyright terms: Public domain W3C validator