Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpokerinj Structured version   Visualization version   GIF version

Theorem grpokerinj 36402
Description: A group homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
grpkerinj.1 𝑋 = ran 𝐺
grpkerinj.2 𝑊 = (GId‘𝐺)
grpkerinj.3 𝑌 = ran 𝐻
grpkerinj.4 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
grpokerinj ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑈}) = {𝑊}))

Proof of Theorem grpokerinj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpkerinj.2 . . . . . . . . 9 𝑊 = (GId‘𝐺)
2 grpkerinj.4 . . . . . . . . 9 𝑈 = (GId‘𝐻)
31, 2ghomidOLD 36398 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑊) = 𝑈)
43sneqd 4602 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → {(𝐹𝑊)} = {𝑈})
5 grpkerinj.1 . . . . . . . . . 10 𝑋 = ran 𝐺
6 grpkerinj.3 . . . . . . . . . 10 𝑌 = ran 𝐻
75, 6ghomf 36399 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:𝑋𝑌)
87ffnd 6673 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹 Fn 𝑋)
95, 1grpoidcl 29505 . . . . . . . . 9 (𝐺 ∈ GrpOp → 𝑊𝑋)
1093ad2ant1 1134 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝑊𝑋)
11 fnsnfv 6924 . . . . . . . 8 ((𝐹 Fn 𝑋𝑊𝑋) → {(𝐹𝑊)} = (𝐹 “ {𝑊}))
128, 10, 11syl2anc 585 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → {(𝐹𝑊)} = (𝐹 “ {𝑊}))
134, 12eqtr3d 2775 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → {𝑈} = (𝐹 “ {𝑊}))
1413imaeq2d 6017 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹 “ {𝑈}) = (𝐹 “ (𝐹 “ {𝑊})))
1514adantl 483 . . . 4 ((𝐹:𝑋1-1𝑌 ∧ (𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻))) → (𝐹 “ {𝑈}) = (𝐹 “ (𝐹 “ {𝑊})))
169snssd 4773 . . . . . 6 (𝐺 ∈ GrpOp → {𝑊} ⊆ 𝑋)
17163ad2ant1 1134 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → {𝑊} ⊆ 𝑋)
18 f1imacnv 6804 . . . . 5 ((𝐹:𝑋1-1𝑌 ∧ {𝑊} ⊆ 𝑋) → (𝐹 “ (𝐹 “ {𝑊})) = {𝑊})
1917, 18sylan2 594 . . . 4 ((𝐹:𝑋1-1𝑌 ∧ (𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻))) → (𝐹 “ (𝐹 “ {𝑊})) = {𝑊})
2015, 19eqtrd 2773 . . 3 ((𝐹:𝑋1-1𝑌 ∧ (𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻))) → (𝐹 “ {𝑈}) = {𝑊})
2120expcom 415 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋1-1𝑌 → (𝐹 “ {𝑈}) = {𝑊}))
227adantr 482 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) → 𝐹:𝑋𝑌)
23 simpl2 1193 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐻 ∈ GrpOp)
247ffvelcdmda 7039 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ 𝑌)
2524adantrr 716 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹𝑥) ∈ 𝑌)
267ffvelcdmda 7039 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ 𝑌)
2726adantrl 715 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹𝑦) ∈ 𝑌)
28 eqid 2733 . . . . . . . . 9 ( /𝑔𝐻) = ( /𝑔𝐻)
296, 2, 28grpoeqdivid 36390 . . . . . . . 8 ((𝐻 ∈ GrpOp ∧ (𝐹𝑥) ∈ 𝑌 ∧ (𝐹𝑦) ∈ 𝑌) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈))
3023, 25, 27, 29syl3anc 1372 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈))
3130adantlr 714 . . . . . 6 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈))
32 eqid 2733 . . . . . . . . . 10 ( /𝑔𝐺) = ( /𝑔𝐺)
335, 32, 28ghomdiv 36401 . . . . . . . . 9 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥( /𝑔𝐺)𝑦)) = ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)))
3433adantlr 714 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥( /𝑔𝐺)𝑦)) = ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)))
3534eqeq1d 2735 . . . . . . 7 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) = 𝑈 ↔ ((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈))
362fvexi 6860 . . . . . . . . . 10 𝑈 ∈ V
3736snid 4626 . . . . . . . . 9 𝑈 ∈ {𝑈}
38 eleq1 2822 . . . . . . . . 9 ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) = 𝑈 → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ 𝑈 ∈ {𝑈}))
3937, 38mpbiri 258 . . . . . . . 8 ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) = 𝑈 → (𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈})
407ffund 6676 . . . . . . . . . . . . 13 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → Fun 𝐹)
4140adantr 482 . . . . . . . . . . . 12 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → Fun 𝐹)
425, 32grpodivcl 29530 . . . . . . . . . . . . . . 15 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → (𝑥( /𝑔𝐺)𝑦) ∈ 𝑋)
43423expb 1121 . . . . . . . . . . . . . 14 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋𝑦𝑋)) → (𝑥( /𝑔𝐺)𝑦) ∈ 𝑋)
44433ad2antl1 1186 . . . . . . . . . . . . 13 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥( /𝑔𝐺)𝑦) ∈ 𝑋)
457fdmd 6683 . . . . . . . . . . . . . 14 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → dom 𝐹 = 𝑋)
4645adantr 482 . . . . . . . . . . . . 13 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → dom 𝐹 = 𝑋)
4744, 46eleqtrrd 2837 . . . . . . . . . . . 12 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥( /𝑔𝐺)𝑦) ∈ dom 𝐹)
48 fvimacnv 7007 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ (𝑥( /𝑔𝐺)𝑦) ∈ dom 𝐹) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ (𝑥( /𝑔𝐺)𝑦) ∈ (𝐹 “ {𝑈})))
4941, 47, 48syl2anc 585 . . . . . . . . . . 11 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ (𝑥( /𝑔𝐺)𝑦) ∈ (𝐹 “ {𝑈})))
50 eleq2 2823 . . . . . . . . . . 11 ((𝐹 “ {𝑈}) = {𝑊} → ((𝑥( /𝑔𝐺)𝑦) ∈ (𝐹 “ {𝑈}) ↔ (𝑥( /𝑔𝐺)𝑦) ∈ {𝑊}))
5149, 50sylan9bb 511 . . . . . . . . . 10 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) ∧ (𝐹 “ {𝑈}) = {𝑊}) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ (𝑥( /𝑔𝐺)𝑦) ∈ {𝑊}))
5251an32s 651 . . . . . . . . 9 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} ↔ (𝑥( /𝑔𝐺)𝑦) ∈ {𝑊}))
53 elsni 4607 . . . . . . . . . . 11 ((𝑥( /𝑔𝐺)𝑦) ∈ {𝑊} → (𝑥( /𝑔𝐺)𝑦) = 𝑊)
545, 1, 32grpoeqdivid 36390 . . . . . . . . . . . . . 14 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → (𝑥 = 𝑦 ↔ (𝑥( /𝑔𝐺)𝑦) = 𝑊))
5554biimprd 248 . . . . . . . . . . . . 13 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → ((𝑥( /𝑔𝐺)𝑦) = 𝑊𝑥 = 𝑦))
56553expb 1121 . . . . . . . . . . . 12 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥( /𝑔𝐺)𝑦) = 𝑊𝑥 = 𝑦))
57563ad2antl1 1186 . . . . . . . . . . 11 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥( /𝑔𝐺)𝑦) = 𝑊𝑥 = 𝑦))
5853, 57syl5 34 . . . . . . . . . 10 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥( /𝑔𝐺)𝑦) ∈ {𝑊} → 𝑥 = 𝑦))
5958adantlr 714 . . . . . . . . 9 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥( /𝑔𝐺)𝑦) ∈ {𝑊} → 𝑥 = 𝑦))
6052, 59sylbid 239 . . . . . . . 8 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) ∈ {𝑈} → 𝑥 = 𝑦))
6139, 60syl5 34 . . . . . . 7 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹‘(𝑥( /𝑔𝐺)𝑦)) = 𝑈𝑥 = 𝑦))
6235, 61sylbird 260 . . . . . 6 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → (((𝐹𝑥)( /𝑔𝐻)(𝐹𝑦)) = 𝑈𝑥 = 𝑦))
6331, 62sylbid 239 . . . . 5 ((((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
6463ralrimivva 3194 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
65 dff13 7206 . . . 4 (𝐹:𝑋1-1𝑌 ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6622, 64, 65sylanbrc 584 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐹 “ {𝑈}) = {𝑊}) → 𝐹:𝑋1-1𝑌)
6766ex 414 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ((𝐹 “ {𝑈}) = {𝑊} → 𝐹:𝑋1-1𝑌))
6821, 67impbid 211 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑈}) = {𝑊}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3061  wss 3914  {csn 4590  ccnv 5636  dom cdm 5637  ran crn 5638  cima 5640  Fun wfun 6494   Fn wfn 6495  wf 6496  1-1wf1 6497  cfv 6500  (class class class)co 7361  GrpOpcgr 29480  GIdcgi 29481   /𝑔 cgs 29483   GrpOpHom cghomOLD 36392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-grpo 29484  df-gid 29485  df-ginv 29486  df-gdiv 29487  df-ghomOLD 36393
This theorem is referenced by:  rngokerinj  36484
  Copyright terms: Public domain W3C validator