| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngorz | Structured version Visualization version GIF version | ||
| Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ringlz.1 | ⊢ 𝑍 = (GId‘𝐺) |
| ringlz.2 | ⊢ 𝑋 = ran 𝐺 |
| ringlz.3 | ⊢ 𝐺 = (1st ‘𝑅) |
| ringlz.4 | ⊢ 𝐻 = (2nd ‘𝑅) |
| Ref | Expression |
|---|---|
| rngorz | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑍) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlz.3 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 37934 | . . . . . 6 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 3 | ringlz.2 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
| 4 | ringlz.1 | . . . . . . 7 ⊢ 𝑍 = (GId‘𝐺) | |
| 5 | 3, 4 | grpoidcl 30495 | . . . . . 6 ⊢ (𝐺 ∈ GrpOp → 𝑍 ∈ 𝑋) |
| 6 | 3, 4 | grpolid 30497 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑍 ∈ 𝑋) → (𝑍𝐺𝑍) = 𝑍) |
| 7 | 2, 5, 6 | syl2anc2 585 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍) |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝑍) = 𝑍) |
| 9 | 8 | oveq2d 7421 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻(𝑍𝐺𝑍)) = (𝐴𝐻𝑍)) |
| 10 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 11 | 1, 3, 4 | rngo0cl 37943 | . . . . . 6 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
| 13 | 10, 12, 12 | 3jca 1128 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋)) |
| 14 | ringlz.4 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 15 | 1, 14, 3 | rngodi 37928 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋)) → (𝐴𝐻(𝑍𝐺𝑍)) = ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍))) |
| 16 | 13, 15 | syldan 591 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻(𝑍𝐺𝑍)) = ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍))) |
| 17 | 2 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ GrpOp) |
| 18 | 1, 14, 3 | rngocl 37925 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (𝐴𝐻𝑍) ∈ 𝑋) |
| 19 | 12, 18 | mpd3an3 1464 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑍) ∈ 𝑋) |
| 20 | 3, 4 | grpolid 30497 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝑍) ∈ 𝑋) → (𝑍𝐺(𝐴𝐻𝑍)) = (𝐴𝐻𝑍)) |
| 21 | 20 | eqcomd 2741 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝑍) ∈ 𝑋) → (𝐴𝐻𝑍) = (𝑍𝐺(𝐴𝐻𝑍))) |
| 22 | 17, 19, 21 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑍) = (𝑍𝐺(𝐴𝐻𝑍))) |
| 23 | 9, 16, 22 | 3eqtr3d 2778 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍))) |
| 24 | 3 | grporcan 30499 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴𝐻𝑍) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ (𝐴𝐻𝑍) ∈ 𝑋)) → (((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)) ↔ (𝐴𝐻𝑍) = 𝑍)) |
| 25 | 17, 19, 12, 19, 24 | syl13anc 1374 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)) ↔ (𝐴𝐻𝑍) = 𝑍)) |
| 26 | 23, 25 | mpbid 232 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑍) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ran crn 5655 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 GrpOpcgr 30470 GIdcgi 30471 RingOpscrngo 37918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-riota 7362 df-ov 7408 df-1st 7988 df-2nd 7989 df-grpo 30474 df-gid 30475 df-ablo 30526 df-rngo 37919 |
| This theorem is referenced by: rngoueqz 37964 rngonegmn1r 37966 zerdivemp1x 37971 0idl 38049 keridl 38056 |
| Copyright terms: Public domain | W3C validator |