Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngorz Structured version   Visualization version   GIF version

Theorem rngorz 36081
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringlz.1 𝑍 = (GId‘𝐺)
ringlz.2 𝑋 = ran 𝐺
ringlz.3 𝐺 = (1st𝑅)
ringlz.4 𝐻 = (2nd𝑅)
Assertion
Ref Expression
rngorz ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑍) = 𝑍)

Proof of Theorem rngorz
StepHypRef Expression
1 ringlz.3 . . . . . . 7 𝐺 = (1st𝑅)
21rngogrpo 36068 . . . . . 6 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ringlz.2 . . . . . . 7 𝑋 = ran 𝐺
4 ringlz.1 . . . . . . 7 𝑍 = (GId‘𝐺)
53, 4grpoidcl 28876 . . . . . 6 (𝐺 ∈ GrpOp → 𝑍𝑋)
63, 4grpolid 28878 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑍𝑋) → (𝑍𝐺𝑍) = 𝑍)
72, 5, 6syl2anc2 585 . . . . 5 (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
87adantr 481 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐺𝑍) = 𝑍)
98oveq2d 7291 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻(𝑍𝐺𝑍)) = (𝐴𝐻𝑍))
10 simpr 485 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐴𝑋)
111, 3, 4rngo0cl 36077 . . . . . 6 (𝑅 ∈ RingOps → 𝑍𝑋)
1211adantr 481 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝑍𝑋)
1310, 12, 123jca 1127 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝑋𝑍𝑋𝑍𝑋))
14 ringlz.4 . . . . 5 𝐻 = (2nd𝑅)
151, 14, 3rngodi 36062 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝑍𝑋𝑍𝑋)) → (𝐴𝐻(𝑍𝐺𝑍)) = ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)))
1613, 15syldan 591 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻(𝑍𝐺𝑍)) = ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)))
172adantr 481 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐺 ∈ GrpOp)
181, 14, 3rngocl 36059 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝑍𝑋) → (𝐴𝐻𝑍) ∈ 𝑋)
1912, 18mpd3an3 1461 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑍) ∈ 𝑋)
203, 4grpolid 28878 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝑍) ∈ 𝑋) → (𝑍𝐺(𝐴𝐻𝑍)) = (𝐴𝐻𝑍))
2120eqcomd 2744 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝑍) ∈ 𝑋) → (𝐴𝐻𝑍) = (𝑍𝐺(𝐴𝐻𝑍)))
2217, 19, 21syl2anc 584 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑍) = (𝑍𝐺(𝐴𝐻𝑍)))
239, 16, 223eqtr3d 2786 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)))
243grporcan 28880 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝐴𝐻𝑍) ∈ 𝑋𝑍𝑋 ∧ (𝐴𝐻𝑍) ∈ 𝑋)) → (((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)) ↔ (𝐴𝐻𝑍) = 𝑍))
2517, 19, 12, 19, 24syl13anc 1371 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)) ↔ (𝐴𝐻𝑍) = 𝑍))
2623, 25mpbid 231 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  ran crn 5590  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  GrpOpcgr 28851  GIdcgi 28852  RingOpscrngo 36052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-riota 7232  df-ov 7278  df-1st 7831  df-2nd 7832  df-grpo 28855  df-gid 28856  df-ablo 28907  df-rngo 36053
This theorem is referenced by:  rngoueqz  36098  rngonegmn1r  36100  zerdivemp1x  36105  0idl  36183  keridl  36190
  Copyright terms: Public domain W3C validator