![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngorz | Structured version Visualization version GIF version |
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringlz.1 | ⊢ 𝑍 = (GId‘𝐺) |
ringlz.2 | ⊢ 𝑋 = ran 𝐺 |
ringlz.3 | ⊢ 𝐺 = (1st ‘𝑅) |
ringlz.4 | ⊢ 𝐻 = (2nd ‘𝑅) |
Ref | Expression |
---|---|
rngorz | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑍) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlz.3 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 36398 | . . . . . 6 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | ringlz.2 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
4 | ringlz.1 | . . . . . . 7 ⊢ 𝑍 = (GId‘𝐺) | |
5 | 3, 4 | grpoidcl 29498 | . . . . . 6 ⊢ (𝐺 ∈ GrpOp → 𝑍 ∈ 𝑋) |
6 | 3, 4 | grpolid 29500 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑍 ∈ 𝑋) → (𝑍𝐺𝑍) = 𝑍) |
7 | 2, 5, 6 | syl2anc2 586 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍) |
8 | 7 | adantr 482 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝑍) = 𝑍) |
9 | 8 | oveq2d 7378 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻(𝑍𝐺𝑍)) = (𝐴𝐻𝑍)) |
10 | simpr 486 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
11 | 1, 3, 4 | rngo0cl 36407 | . . . . . 6 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
12 | 11 | adantr 482 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
13 | 10, 12, 12 | 3jca 1129 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋)) |
14 | ringlz.4 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
15 | 1, 14, 3 | rngodi 36392 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋)) → (𝐴𝐻(𝑍𝐺𝑍)) = ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍))) |
16 | 13, 15 | syldan 592 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻(𝑍𝐺𝑍)) = ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍))) |
17 | 2 | adantr 482 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ GrpOp) |
18 | 1, 14, 3 | rngocl 36389 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (𝐴𝐻𝑍) ∈ 𝑋) |
19 | 12, 18 | mpd3an3 1463 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑍) ∈ 𝑋) |
20 | 3, 4 | grpolid 29500 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝑍) ∈ 𝑋) → (𝑍𝐺(𝐴𝐻𝑍)) = (𝐴𝐻𝑍)) |
21 | 20 | eqcomd 2743 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝑍) ∈ 𝑋) → (𝐴𝐻𝑍) = (𝑍𝐺(𝐴𝐻𝑍))) |
22 | 17, 19, 21 | syl2anc 585 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑍) = (𝑍𝐺(𝐴𝐻𝑍))) |
23 | 9, 16, 22 | 3eqtr3d 2785 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍))) |
24 | 3 | grporcan 29502 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴𝐻𝑍) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ (𝐴𝐻𝑍) ∈ 𝑋)) → (((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)) ↔ (𝐴𝐻𝑍) = 𝑍)) |
25 | 17, 19, 12, 19, 24 | syl13anc 1373 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)) ↔ (𝐴𝐻𝑍) = 𝑍)) |
26 | 23, 25 | mpbid 231 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑍) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ran crn 5639 ‘cfv 6501 (class class class)co 7362 1st c1st 7924 2nd c2nd 7925 GrpOpcgr 29473 GIdcgi 29474 RingOpscrngo 36382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-fo 6507 df-fv 6509 df-riota 7318 df-ov 7365 df-1st 7926 df-2nd 7927 df-grpo 29477 df-gid 29478 df-ablo 29529 df-rngo 36383 |
This theorem is referenced by: rngoueqz 36428 rngonegmn1r 36430 zerdivemp1x 36435 0idl 36513 keridl 36520 |
Copyright terms: Public domain | W3C validator |