Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngorz Structured version   Visualization version   GIF version

Theorem rngorz 37913
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringlz.1 𝑍 = (GId‘𝐺)
ringlz.2 𝑋 = ran 𝐺
ringlz.3 𝐺 = (1st𝑅)
ringlz.4 𝐻 = (2nd𝑅)
Assertion
Ref Expression
rngorz ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑍) = 𝑍)

Proof of Theorem rngorz
StepHypRef Expression
1 ringlz.3 . . . . . . 7 𝐺 = (1st𝑅)
21rngogrpo 37900 . . . . . 6 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ringlz.2 . . . . . . 7 𝑋 = ran 𝐺
4 ringlz.1 . . . . . . 7 𝑍 = (GId‘𝐺)
53, 4grpoidcl 30458 . . . . . 6 (𝐺 ∈ GrpOp → 𝑍𝑋)
63, 4grpolid 30460 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑍𝑋) → (𝑍𝐺𝑍) = 𝑍)
72, 5, 6syl2anc2 585 . . . . 5 (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
87adantr 480 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐺𝑍) = 𝑍)
98oveq2d 7365 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻(𝑍𝐺𝑍)) = (𝐴𝐻𝑍))
10 simpr 484 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐴𝑋)
111, 3, 4rngo0cl 37909 . . . . . 6 (𝑅 ∈ RingOps → 𝑍𝑋)
1211adantr 480 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝑍𝑋)
1310, 12, 123jca 1128 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝑋𝑍𝑋𝑍𝑋))
14 ringlz.4 . . . . 5 𝐻 = (2nd𝑅)
151, 14, 3rngodi 37894 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝑍𝑋𝑍𝑋)) → (𝐴𝐻(𝑍𝐺𝑍)) = ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)))
1613, 15syldan 591 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻(𝑍𝐺𝑍)) = ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)))
172adantr 480 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐺 ∈ GrpOp)
181, 14, 3rngocl 37891 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝑍𝑋) → (𝐴𝐻𝑍) ∈ 𝑋)
1912, 18mpd3an3 1464 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑍) ∈ 𝑋)
203, 4grpolid 30460 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝑍) ∈ 𝑋) → (𝑍𝐺(𝐴𝐻𝑍)) = (𝐴𝐻𝑍))
2120eqcomd 2735 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝑍) ∈ 𝑋) → (𝐴𝐻𝑍) = (𝑍𝐺(𝐴𝐻𝑍)))
2217, 19, 21syl2anc 584 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑍) = (𝑍𝐺(𝐴𝐻𝑍)))
239, 16, 223eqtr3d 2772 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)))
243grporcan 30462 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝐴𝐻𝑍) ∈ 𝑋𝑍𝑋 ∧ (𝐴𝐻𝑍) ∈ 𝑋)) → (((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)) ↔ (𝐴𝐻𝑍) = 𝑍))
2517, 19, 12, 19, 24syl13anc 1374 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (((𝐴𝐻𝑍)𝐺(𝐴𝐻𝑍)) = (𝑍𝐺(𝐴𝐻𝑍)) ↔ (𝐴𝐻𝑍) = 𝑍))
2623, 25mpbid 232 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ran crn 5620  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  GrpOpcgr 30433  GIdcgi 30434  RingOpscrngo 37884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-riota 7306  df-ov 7352  df-1st 7924  df-2nd 7925  df-grpo 30437  df-gid 30438  df-ablo 30489  df-rngo 37885
This theorem is referenced by:  rngoueqz  37930  rngonegmn1r  37932  zerdivemp1x  37937  0idl  38015  keridl  38022
  Copyright terms: Public domain W3C validator